Advertisement

Radiophysics and Quantum Electronics

, Volume 60, Issue 8, pp 653–660 | Cite as

The Influence of the Motion of a Strongly Magnetized Plasma on Radiation from a Traveling-Wave Antenna

  • D. D. Bareev
  • V. G. Gavrilenko
  • V. D. Pikulin
Article

We consider the problem of radiation from a traveling-wave antenna in a warm electron plasma which moves along a strong magnetic field at a constant velocity. To describe the electromagnetic properties of the plasma, we use the diagonal tensor of dielectric permittivity, which is calculated for a magnetized plasma with the Maxwellian electron velocity distribution allowing for collisions of electrons with neutral molecules. The dispersion relation is analyzed numerically, and expressions for the field amplitudes in the wave zone are obtained. The radiation resistance of the antenna is calculated. It is shown that as the phase velocity of the traveling current wave in the antenna approaches the average velocity of the plasma motion, the radiation field decreases exponentially with distance from the source as a result of the efficient transfer of the wave energy to the plasma electrons due to collisionless interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. McKenzie, J. Appl. Phys., 38, 5249 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    E.A. Mareev and Yu.V. Chugunov, Antennas in Plasmas [in Russian], Inst. Appl. Phys., Nizhny Novgorod (1991).Google Scholar
  3. 3.
    Yu.V. Chugunov and V. Fiala, IEEE Trans. Antennas Propagat., 54, No. 10, 2750 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    Yu.V. Chugunov and V. Fiala, Radiophys. Quantum Electron., 52, No. 12, 867 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    V. G. Gavrilenko and S. I. Zaitsev, Radiophys. Quantum Electron., 27, No. 7, 631 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    V. G. Gavrilenko and S. I. Zaitsev, Radiophys. Quantum Electron., 28, No. 3, 195 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    V. G. Gavrilenko, E.Yu. Petrov, V. D. Pikulin, and D. A. Sutyagina, Plasma Phys. Rep., 32, No. 3, 222 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    D. D. Bareev, V.G. Gavrilenko, and V.D. Pikulin, Radiophys. Quantum Electron., 56, No. 5, 290 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    D. C. Pridmore-Brown, Radio Sci., 10, No. 12, 1063 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    V. M. Kostin and A.V. Timofeev, Sov. Phys. JETP, 26, No. 4, 801 (1968).ADSGoogle Scholar
  11. 11.
    V. G. Gavrilenko and L. A. Zelekson, Sov. J. Plasma Phys., 6, 672 (1980).ADSGoogle Scholar
  12. 12.
    A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics, Springer, Berlin–Heidelberg (2013).Google Scholar
  13. 13.
    V.Yu. Éidman, Radiophys. Quantum Electron., 22, No. 7, 541 (1979).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. D. Bareev
    • 1
  • V. G. Gavrilenko
    • 1
  • V. D. Pikulin
    • 1
  1. 1.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations