Advertisement

Radiophysics and Quantum Electronics

, Volume 60, Issue 8, pp 640–652 | Cite as

Ozone Content Variability in the Atmosphere Above Nizhny Novgorord. Comparison of the Results of the Radiometric and Satellite Measurements, Reanalysis, and Numerical Simulation

  • T. S. Ermakova
  • S. P. Smyshlyaev
  • M. Yu. Kulikov
  • M. V. Belikovich
  • A. A. Krasil’nikov
  • V. G. Ryskin
  • A. A. Nechaev
  • A.M. Feigin
Article

We compare the results of observations and numerical simulation of the ozone-content variability in the atmosphere above Nizhny Novgorod for the winters 2015 and 2016. The data of the local ground-based measurements and the MERRA reanalysis, the satellite data (SBUV device), and the numerical-simulation results are used. The analysis of the results demonstrates similar patterns of the ozone-content variability for all data sources. The stable altitude maximum in the middle stratosphere with the short-term intervals of ozone-density increase is observed. Using the numerical-analysis data allows one to estimate the influence of the photochemical and dynamic factors on the observed ozone-content variability in the winter months in the atmosphere above Nizhny Novgorod.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Report No. 52, World Meteorological Organization, Geneva (2011).Google Scholar
  2. 2.
    P.K. Bhartia, R. D. McPeters, L. E. Flynn, et al., Atmos. Meas. Tech., No. 6, 2533 (2013).Google Scholar
  3. 3.
    A. M.Thompson, J.C.Witte, R.D.McPeters, et al., J. Geophys. Res., 108, No. D2, 8238 (2003).Google Scholar
  4. 4.
    A. M.Thompson, J.B. Stone, J.C.Witte, et al., J. Geophys. Res., 112, No. D12, D12S13 (2007).Google Scholar
  5. 5.
    H. G. J. Smit, W. Straeter, B. Johnson, et al., J. Geophys. Res., 112, D19306 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A.M.Thompson, J.C.Witte, S. J.Oltmans, et al., J. Geophys. Res., 108, No. D2, 8241 (2003).Google Scholar
  7. 7.
    A.M. Thompson, J.C.Witte, S. J.Oltmans, and F. J. Schmidlin, B. Am. Meteorol. Soc., 85, No. 10, 1549 (2004).Google Scholar
  8. 8.
    A. A.Krasil’nikov, M.Yu.Kulikov, L.M.Kukin, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 628 (2013).Google Scholar
  9. 9.
    M.Yu.Kulikov, A.A.Krasil’nikov, A.A. Shvetsov, et al., Radiophys. Quantum Electron., 58, No. 6, 409 (2015).Google Scholar
  10. 10.
    D. N.Mukhin, A.M. Feigin, Ya. I.Molkov, and E.V. Suvorov, Adv. Space Res., 37, No. 12, 2292 (2006).Google Scholar
  11. 11.
    C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, Singapore (2000).Google Scholar
  12. 12.
  13. 13.
    J.E. Frederick, R.P.Cebula, and D. F.Heath, J. Atmos. Ocean. Tech., 3, 472 (1986).Google Scholar
  14. 14.
    D. F. Heath, A. J.Krueger, H. A. Roeder, and B. D. Henderson, Opt. Eng., 14, 323 (1975).ADSCrossRefGoogle Scholar
  15. 15.
    C. L.Mateer, D. F.Heath, and A. J. Krueger, J. Atmos. Sci., 28, 1307 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    Yu.M.Timofeev, Global System of Monitoring of the Atmospheric Parameters and the Surface [in Russian], Izd. St.Petersburg Univ., St.Petersburg (2009).Google Scholar
  17. 17.
    A. V. Polyakov, Determination of the Atmospheric Gas Composition and Aerosol Characteristics, Thesis (phys.-math.), St.Petersburg (2006).Google Scholar
  18. 18.
    M. M. Rienecker, M. J. Suarez, R. Gelaro, et al., J. Climate, 24, 3624 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    S.P. Smyshlyaev, Ya. A. Virolainen, M. A. Motsakov, et al., Izv. Atmos. Oceanic Phys., 53, No. 3, 301 (2017).Google Scholar
  20. 20.
    V.Ya.Galin, S.P. Smyshlyaev, and E.M.Volodin, Izv. Atmos. Oceanic Phys., 43, No. 4, 399 (2007).Google Scholar
  21. 21.
    S.P. Smyshlyaev, V.Ya. Galin, E.M.Atlaskin, and P.A.Blakitnaya, Izv. Atmos. Oceanic Phys., 46, No. 5, 623 (2010).Google Scholar
  22. 22.
    S.P.Smyshlyaev, E.A.Mareev, and V.Ya.Galin, Izv. Atmos. Oceanic Phys., 46, No. 4, 451 (2010).Google Scholar
  23. 23.
    S.P.Smyshlyaev, V.Ya.Galin, P.A.Blakitnaya, and A.K. Lemishchenko, Izv. Atmos. Oceanic Phys., 52, No. 1, 16 (2016).Google Scholar
  24. 24.
    S.P. Sander, J.Abbatt, J. R.Barker, et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation 17. JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena (2011).Google Scholar
  25. 25.
    V. L. Dvortsov, S.G. Zvenigorodsky, and S.P. Smyshlyaev, J. Geophys. Res., 104, No. D21, 26401 (1992).Google Scholar
  26. 26.
    A.W.DeWolfe, A.Wilson, D.M. Lindholm, et al., Abstracts of the Amer. Geophys. Union Fall Meeting 13–17 December 2010, San Francisco, No. GC21B-0881.Google Scholar
  27. 27.
    S.P.Smyshlyaev, Yu.M. Timofeev, O.Kirner, et al., in: Proc. XIV All-Russia Conf. “Modern Problems of Remote Sensing of the Earth from Space,” November 14–18, 2016, Moscow, p. 196.Google Scholar
  28. 28.
    S.P.Smyshlyaev, V.Ya.Galin, G. Shaariibuu, and M.A.Motsakov, Izv. Atmos. Oceanic Phys., 46, No. 3, 265 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. S. Ermakova
    • 1
    • 2
  • S. P. Smyshlyaev
    • 1
    • 2
  • M. Yu. Kulikov
    • 1
  • M. V. Belikovich
    • 1
  • A. A. Krasil’nikov
    • 1
  • V. G. Ryskin
    • 1
  • A. A. Nechaev
    • 1
  • A.M. Feigin
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Russia State Hydrometeorological UniversitySt. PetersburgRussia

Personalised recommendations