Skip to main content
Log in

The Electron-Optical System of a Gyrotron with an Operating Frequency of 263 GHz for Spectroscopic Research

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe specific features of modeling numerically the operation of magnetron-injection guns, which form high-quality helical electron beams in gyrotrons operated in the short-wave part of the millimeter-wave band (at a wavelength of 1 mm). As an example, we consider the gun of a gyrotron having an operating frequency of 263 GHz designed for spectroscopic research. It is shown that there are good reasons to perform calculations and optimization of the magnetroninjection un in two steps. At the first step, a simplest two-dimensional model can be used, which allows only for the influence of the field of the electrodes and the intrinsic space charge of the beam on the beam parameters. At the second, final stage one should allow for such factors as roughness of the emitting surface and thermal velocities of electrons. The electron distribution function in oscillatory velocities and the coefficient of electron reflection from the magnetic mirror should be calculated. It is demonstrated that the magnetron-injection gun, which is optimized by the method presented, is sufficiently universal and can be operated both at the first and second cyclotron-frequency harmonics. This opens up the possibility of developing gyrotrons for spectroscopy applications at frequencies of 263 and 526 GHz, respectively, which are required for biological and medical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. G. Litvak, G.G. Denisov, V.E. Myasnikov, et al., Int. J. IRMM THz Waves, 32, No. 3, 337 (2011).

    Google Scholar 

  2. M.Yu. Glyavin, A.G. Luchinin, V. N. Manuilov, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 600 (2011).

    ADS  Google Scholar 

  3. V. L. Bratman, A. A. Bogdashov, G. G. Denisov, et al., Int. J. IRMM THz Waves, 33, No. 7, 715 (2012).

    Google Scholar 

  4. J.H. Booske, R. J. Dobbs, C.D. Joye, et al., IEEE Trans. Terahertz Sci. Technology, 1, No. 1, 54 (2011).

    Article  ADS  Google Scholar 

  5. M. Thumm, State-of-the-Art of High Power Gyro-Devices and Free Electron Masers, KIT Scientific Publishing, Karlsruhe (2013).

    Google Scholar 

  6. M.Yu. Glyavin, G.G. Denisov, V. E. Zapevalov, et al., J. Communi. Tech. Electron., 59, No. 8, 792 (2014).

    Article  Google Scholar 

  7. Sh. E. Tsimring, Lectures on Microwave Electronics (3rd Winter Workshop for Engineers), Vol. 4 [in Russian], Saratov State Univ. (1974), p. 3.

  8. Sh. E. Tsimring, Introduction to High-Frequency Vacuum Electronics and Physics of Electron Beams [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2012).

  9. Sh. E. Tsimring, Radiophys. Quantum Electron., 15, No. 8, 952 (1972).

    Article  ADS  Google Scholar 

  10. V.K. Lygin, Int. J. Infrared Millimeter Waves, 16, No. 2, 363 (1995).

    Article  ADS  Google Scholar 

  11. A. N. Kuftin, V.K. Lygin, Sh. E. Tsimring, and V. E. Zapevalov, Int. J. Electron., 72, Nos. 5–6, 1145 (1992).

    Article  Google Scholar 

  12. V. K. Lygin and Sh. E. Tsimring, Zh. Tekh. Fiz., 43, No. 8, 1695 (1973).

    Google Scholar 

  13. V. N. Manuilov and Sh. E. Tsimring, Radiophys. Quantum Electron., 24, No. 4, 338 (1981).

    Article  ADS  Google Scholar 

  14. V. N. Manuilov and S. A. Polushkina, Radiophys. Quantum Electron., 52, No. 10, 714 (2009).

    Article  ADS  Google Scholar 

  15. P. V. Krivosheev, V.K. Lygin, V.N. Manuilov, and Sh. E. Tsimring, Int. J. Infrared Millimeter Waves, 22, No. 8, 1119 (2001).

    Article  Google Scholar 

  16. M. Glyavin, A.Chirkov, G. Denisov, et al., Proc. 9th Int. Workshop on Strong Microwaves and Terahertz waves: Sources and Applications, Nizhny Novgorod, Russia, July 24–30, 2014, p. 203.

  17. A. N. Kuftin, V.K. Lygin, V.N. Manuilov, et al., Int. J. Infrared Millimeter Waves, 20, No. 3, 361 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Manuilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 2, pp. 145–152, February 2016. Original article submitted December 25, 2014; accepted May 19, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuftin, A.N., Manuilov, V.N. The Electron-Optical System of a Gyrotron with an Operating Frequency of 263 GHz for Spectroscopic Research. Radiophys Quantum El 59, 130–136 (2016). https://doi.org/10.1007/s11141-016-9682-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9682-x

Navigation