Radiophysics and Quantum Electronics

, Volume 59, Issue 1, pp 22–32 | Cite as

Model of the Dynamics of Plasma-Wave Channels in Magnetized Plasmas


We analyze the dynamics of the plasma-wave channels excited in magnetized plasmas in the whistler frequency range. A linear theory of excitation of a plasma waveguide by an external source is developed using the quasistatic approximation. Self-consistent spatio-temporal distributions of the electric field of quasipotential waves and plasma density, which are solutions of the nonlinear nonstationary problem of the ionizing self-channeling of waves in plasmas are found on the basis of the linear theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Markov, V.A.Mironov, and A. M. Sergeev, JETP Lett., 29, No. 11, 617 (1979).ADSGoogle Scholar
  2. 2.
    G. A. Markov, J. Exp. Theor. Phys., 86, No. 4, 703 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    G. A. Markov and A. S. Belov, Phys. Usp., 53, No. 7, 703 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    Yu.V.Chugunov and G.A.Markov, J. Atm. Sol.-Terr. Phys., 63, No. 17, 1775 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    A. V.Kudrin, L. E.Kurina, and G.A.Markov, J. Exp. Theor. Phys., 85, No. 4, 697 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    I. S. Kondratiev, A.V. Kudrin, and T.M. Zaboronkova, Electrodynamics of Density Ducts in Magnetized Plasmas, CRC Press, Amsterdam (1999).MATHGoogle Scholar
  7. 7.
    E.A.Mareev and Yu.V. Chugunov, Antennas in Plasmas [in Russian], Inst. Appl. Phys., Rus. Acad. Sci., Nizhny Novgorod (1991).Google Scholar
  8. 8.
    A. N.Kondratenkov, Plasma Waveguides [in Russian], Atomizdat, Moscow (1976).Google Scholar
  9. 9.
    I. S. Gradshtein and I.M.Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  10. 10.
    G. N.Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge (1995).MATHGoogle Scholar
  11. 11.
    L. A.Weinstein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).Google Scholar
  12. 12.
    A. V.Kudrin, A. Zaitseva, T. M. Zaboronkova, and S. S. Zilitinkevich, Progress Electromagn. Res. B, 55, 241 (2013).CrossRefGoogle Scholar
  13. 13.
    G. A. Markov, L. L. Popova, and Yu. V.Chugunov, Pis’ma v Zhurn. Tekh. Fiz., 11, No. 23, 1465 (1985).Google Scholar
  14. 14.
    B. N. Gershman, Dynamics of Ionospheric Plasma [in Russian], Nauka, Moscow (1974).Google Scholar
  15. 15.
    A.P. Zhilinskii and L.D.Tsendin, Sov. Phys. Usp., 23, No. 7, 331 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Gurevich and A.B. Shwartsburg, Nonlinear Theory of Ionospheric Propagation of Radio Waves [in Russian], Nauka, Moscow (1973).Google Scholar
  17. 17.
    Yu.P.Raizer, Gas Discharge Physics, Springer-Verlag, Berlin (1991).CrossRefGoogle Scholar
  18. 18.
    D. Anderson, U. Jordan, M. Lisak, et al., IEEE Trans. Microw. Theory Tech., 47, No. 12, 2547 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Kudrin, G.A.Markov, V.Yu.Trakhtengerts, and Yu.V.Chugunov, Geomagn. Aéron., 31, No. 2, 334 (1991).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhnyRussia

Personalised recommendations