Radiophysics and Quantum Electronics

, Volume 58, Issue 10, pp 745–754 | Cite as

Peculiarities of the Mode Spectrum in Free-Electron Masers Based on Oversized Bragg Resonators with a Corrugation Phase Step

  • N. Yu. Peskov
  • A. K. Kaminsky
  • S. V. Kuzikov
  • E. A. Perel’shtein
  • S. N. Sedykh
  • A. S. Sergeev

We study the operating mode splitting caused by interaction of the neighboring Bragg scattering zones in an oversized Bragg resonator with a corrugation phase step, which is operated at the coupled forward and backward waveguide modes with different transverse structures. This effect is described within the framework of the coupled-wave approach using an advanced four-wave model. It is shown that this effect deteriorates the selective properties of the resonator and, finally, restricts the output power and reduces stability of the narrow-band operating regime in the free-electron masers (FEMs) based on such resonators. The results of the theoretical analysis were corroborated by 3D simulations and “cold” electrodynamic tests. Experimental studies of 30-GHz FEMs with the Bragg resonators having different corrugation depths demonstrated the onset of both narrow-band single-mode and multifrequency multimode oscillation regimes in such resonators. The possibility of power enhancement by using passive compression of the FEM output pulse in a double-frequency oscillation regime is discussed.


Partial Wave Waveguide Mode Oscillation Regime Corrugate Waveguide Bragg Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Kaminsky, É. A. Perel’shtein, S. N. Sedykh, et al., Tech. Phys. Lett., 36, No. 3, 211 (2010).Google Scholar
  2. 2.
    N. S.Ginzburg, I. I.Golubev, A. K. Kaminsky, et al., Phys. Rev. ST Accel. Beams, 14, 041002 (2011).Google Scholar
  3. 3.
    A.A. Kaminsky, A.K.Kaminsky, and S.B.Rubin, Particle Accelerators, 33, 189 (1990).Google Scholar
  4. 4.
    M.E.Conde and G. Bekefi, Phys. Rev. Lett ., 67, No. 22, 3082 (1991).Google Scholar
  5. 5.
    N. F.Kovalev, M. I.Petelin, and M. G. Resnikov, “Resonator,” USSR Author’s Certificate No. 720592 [in Russian], Publ. 1980, Bull. No. 9.Google Scholar
  6. 6.
    V. L. Bratman, G. G. Denisov, N. S.Ginzburg, and M. I. Petelin, IEEE J. Quant. Electr., QE-19, No. 3, 282 (1983).Google Scholar
  7. 7.
    N.Yu. Peskov, N. S. Ginzburg, A. A.Kaminskii, et al., Tech. Phys. Lett ., 25, No. 6, 429 (1999).Google Scholar
  8. 8.
    V. L.Bratman, N. S.Ginzburg, and M. I.Petelin, Opt. Commun., 30, No. 3, 409 (1979).Google Scholar
  9. 9.
    N. S.Ginzburg and N.Yu. Peskov, Zh. Tekh. Fiz ., 58, No. 5, 859 (1988).Google Scholar
  10. 10.
    N. S.Ginzburg and N.Yu. Peskov, Phys. Rev. ST. Accel. Beams, 16, 090701 (2013).Google Scholar
  11. 11.
    N.Yu. Peskov, A.K.Kaminsky, S.V.Kuzikov, et al., in: Proc. VII Int. Workshop “Strong Microwaves: Sources and Applications,” N.Novgorod, Russia, 2008, V. 1. P. 224.Google Scholar
  12. 12.
    H.Kogelnik and C.V. Shank, Appl. Phys., 43, 2327 (1972).Google Scholar
  13. 13.
    A.Yariv, Quantum Electronics, John Wiley and Sons Inc., New York (1975).Google Scholar
  14. 14.
    N. F.Kovalev, I. M.Orlova, and M. I.Petelin, Radiophys. Quantum Electron., 11, No. 5, 449 (1968).Google Scholar
  15. 15.
    G. G. Denisov and M.G.Reznikov, Radiophys. Quantum Electron., 25, No. 5, 407 (1982).Google Scholar
  16. 16.
    V. L. Bratman, G. G. Denisov, N. S.Ginzburg, et al., Int. J. Electron., 59, No. 3, 247 (1985).Google Scholar
  17. 17.
    N. S. Gizburg, N.Yu. Peskov, and A. S. Sergeev, Radiotekh. Élektron., 40, No. 3, 401 (1995).Google Scholar
  18. 18.
    N. S. Ginzburg, A. M. Malkin, N.Yu.Peskov, et al., Phys. Rev. ST. Accel. Beams, 8, 040705 (2005).Google Scholar
  19. 19.
    N.Yu. Peskov, S. V. Samsonov, N. S.Ginzburg, and V. L.Bratman, Nucl. Instr. Meth. Phys. Res. A, A407, 107 (1998).Google Scholar
  20. 20.
    N. S.Ginzburg, A. K. Kaminsky, N.Yu. Peskov, et al., IEEE Trans. Plasma Sci., 26, No. 3, 536 (1998).Google Scholar
  21. 21.
    S. V.Kuzikov, N.Yu.Peskov, and M. E.Plotkin, Vestnik NGU, Ser. Fizika, 8, No. 1, 24 (2013).Google Scholar
  22. 22.
    Yu.Yu. Danilov, S. V.Kuzikov, and M. I.Petelin, Tech. Phys., 45, No. 1, 63 (2000).Google Scholar
  23. 23.
    Yu.Yu. Danilov, S. V.Kuzikov, V. G. Pavel’ev, and Yu. I.Koshurinov, Pis’ma Zh. Tekh. Fiz ., 27, No. 3, 245 (2001).Google Scholar
  24. 24.
    S. V. Samsonov, A.D.R.Phelps, V. L. Bratman, et al., Phys. Rev. Lett ., 92, 18301 (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. Yu. Peskov
    • 1
  • A. K. Kaminsky
    • 2
  • S. V. Kuzikov
    • 1
    • 3
  • E. A. Perel’shtein
    • 2
  • S. N. Sedykh
    • 2
  • A. S. Sergeev
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Joint Institute of Nuclear ResearchDubnaRussia
  3. 3.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations