Advertisement

Radiophysics and Quantum Electronics

, Volume 58, Issue 9, pp 649–659 | Cite as

Peculiarities of Optimizing the Subsystems of a Continuous-Wave Gyrotron with a Generation Frequency of 0.26 THz at the Fundamental Cyclotron Resonance

  • M. Yu. Glyavin
  • G. G. Denisov
  • V. E. Zapevalov
  • A. N. Kuftin
  • V. N. Manuilov
  • E. A. Soluyanova
  • A. S. Sedov
  • V. V. Kholoptsev
  • A. V. Chirkov
Article

We present the results of developing the main units of a gyrotron operated in the continuous-wave regime with a generation frequency of 0.26 THz. To improve selection of the operating mode in a oversized electrodynamic system, the gyrotron works at the fundamental cyclotron harmonic, which anticipates the use of a cryomagnet with a maximum magnetic field of 10 T, which does not require filling with liquid helium. The results of optimizing the electron-optical system, the cavity, and the quasi-optical converter of the output radiation are presented, and the control system, which is developed for the gyrotron setup, is described.

Keywords

Velocity Spread Pitch Factor Magnetic Mirror Electron Optical System Output Radiation Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Booske, R. J.Dobbs, C.D. Joye, et al., IEEE Trans. Terahertz Sci. Technol., 1, 1, 54 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Sidorov, V. L. Bratman, M.Yu.Glyavin, et al., Abstr. 40th IEEE Int. Conf. Plasma Sci. (ICOPS 2013), San-Francisco, 16–21 June 2013, DOI:10.1109/PLASMA.2013.6635224.Google Scholar
  3. 3.
    T. Idehara and S.P. Sabchevski, J. Infrared, Millimeter, and Terahertz Waves, 33, 7, 667 (2012).Google Scholar
  4. 4.
    A. V. Gaponov, M. I. Petelin, and V.K.Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794 (1967).Google Scholar
  5. 5.
    V. A. Flyagin, A. V. Gaponov, M. I.Petelin, and V.K.Yulpatov, IEEE Trans. Microwave Theory Techn., 25, No. 6, 514 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    A.C.Torrezan, S. -T.Han, I.Mastovsky, et al., IEEE Trans. Plasma Sci., 38, No. 6, 1150 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    S. Jawla, E.Nanni, M. Shapiro, et al., in: Proc. 36th Int. Conf. Infrared, Millimeter, Terahertz Waves (IRMMW-THz), Houston, 2–7 Oct. 2011, doi:10.1109.IRMMW-THz.2011. 6105096.Google Scholar
  8. 8.
    M. Blank, P. Borchard, S.Cauffman, et al., Vacuum Electron. Conf., IEEE Int. 22–24 April 2014, Monterey, CA, USA, p.7.Google Scholar
  9. 9.
  10. 10.
    T. Idehara, T. Saito, and I.Ogawa, Thin Solid Films, 517, No. 4, 1503 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    S. Alberti, J. -Ph.Ansermet, K. A. Avramides, et al., Phys. Plasmas, 19, No. 12, 123102 (2012).Google Scholar
  12. 12.
    N. I. Zaitsev, T. B. Pankratova, M. I. Petelin, and V. A. Flyagin, Radiotekh. ´ Elektron., 19, No. 5, 1056 (1974).Google Scholar
  13. 13.
    M.Yu.Glyavin, A.A.Gurtovnik, G. S.Nusinovich, and T.B.Pankratova, in: Gyrotrons [in Russian], Inst. Appl. Phys., Gorky (1989), p. 73.Google Scholar
  14. 14.
    V. E. Zapevalov, V.K. Lygin, O. V. Malygin, et al., Radiophys. Quantum Electron., 50, No. 6, 461 (2007).Google Scholar
  15. 15.
    N.P.Venediktov, V.V.Dubrov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 53, No. 4, 260 (2010).CrossRefGoogle Scholar
  16. 16.
    V. Denysenkov, M. J. Prandolini, M. Gafurov, et al., Chemistry Chemical Phys., 12, 5786 (2010).CrossRefGoogle Scholar
  17. 17.
    V. L. Bratman, A. A. Bogdashov, G. G. Denisov, et al., J. IRMM THz Waves, 33, No. 7, 715 (2012).Google Scholar
  18. 18.
    M.Yu.Glyavin, G.G. Denisov, V. E. Zapevalov, et al., J. Commun. Tech. Electron., 59, No. 8, 792 (2014).CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Sh. E. Tsimring, Lectures on Microwave Electronics [in Russian], in: Proc. 3rd Winter Workshop for Engineers. Vol. 4, Saratov State University, Saratov (1974), p. 3.Google Scholar
  21. 21.
    Sh. E. Tsimring, Introduction to High-Frequency Vacuum Electronics and Physics of Electron Beams [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2012).Google Scholar
  22. 22.
    Sh. E. Tsimring, Radiophys. Quantum Electron., 15, No. 8, 1247 (1972).Google Scholar
  23. 23.
    V.K. Lygin, Int. J. Infrared Millimeter Waves, 16, No. 2, 363 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    A. N.Kuftin, V.K. Lygin, Sh. E.Tsimring, and V. E. Zapevalov, Int. J. Electron., 72, 1145 (1992).CrossRefGoogle Scholar
  25. 25.
    V. K. Lygin and Sh. E. Tsimring, Zh. Tekh. Fiz., 43, No. 8, 1695 (1973).Google Scholar
  26. 26.
    V. N. Manuilov and Sh. E.Tsimring, Radiophys. Quantum Electron., 24, No. 4, 491 (1981).Google Scholar
  27. 27.
    V. N. Manuilov and S. A. Polushkina, Radiophys. Quantum Electron., 52, No. 10, 795 (2009).Google Scholar
  28. 28.
    P. V.Krivosheev, V.K. Lygin, V.N.Manuilov, and Sh. E.Tsimring, Int. J. Infrared Millimeter Waves, 22, No. 8, 1119 (2001).CrossRefGoogle Scholar
  29. 29.
    G. S.Nusinovich, Radiotekh. ´ Elektron., 19, No. 8, 1788 (1974).Google Scholar
  30. 30.
    N. S.Ginzburg, G. S.Nusinovich, and N.A. Zavolsky, Int. J. Electron., 61, No. 6, 881 (1986).CrossRefGoogle Scholar
  31. 31.
    M. A. Moiseev, L. L.Nemirovskaya, V. E. Zapevalov, and N.A. Zavolsky, Int. J. Infrared Millimeter Waves, 18, No. 11, 2117 (1997).ADSCrossRefGoogle Scholar
  32. 32.
    V. L. Bratman, M. A. Moiseev, M. I. Petelin, and R. E. Erm, Radiophys. Quantum Electron., 16, No. 4, 622 (1973).Google Scholar
  33. 33.
    S. N. Vlasov and I. M.Orlova, Radiophys. Quantum Electron., 17, No. 1, 148 (1974).Google Scholar
  34. 34.
    S. N. Vlasov and K. M. Likin, in: Gyrotron [in Russian], Inst. Appl. Phys., Gorky (1980), p. 125.Google Scholar
  35. 35.
    V. N. Glazman, S. D. Bogdanov, S.N. Vlasov, et al., USSR Author’s Certificate 952033. Cyclotron Resonance Maser, filed 16.01.1981, publ. 20.11.1999.Google Scholar
  36. 36.
    V.E.Myasnikov, A.P.Cayer, S. D. Bogdanov, and V. I.Kurbatov, in: Conf. Digest 16th Int. Conf. Infrared Millimeter Waves, Lausanne, 26–30 August 1991, SPIE, 1576, p. 127.Google Scholar
  37. 37.
    B. Z.Katsenelenbaum and V.V. Semenov, Radiotekh. ´ Elektron., No. 2, 244 (1967).Google Scholar
  38. 38.
    A. V.Chirkov, G. G. Denisov, M. L.Kulygin, et al., Radiophys. Quantum Electron., 59, No. 5, 381 (2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Yu. Glyavin
    • 1
    • 2
  • G. G. Denisov
    • 1
    • 2
  • V. E. Zapevalov
    • 1
  • A. N. Kuftin
    • 1
  • V. N. Manuilov
    • 1
    • 3
  • E. A. Soluyanova
    • 2
  • A. S. Sedov
    • 1
  • V. V. Kholoptsev
    • 1
  • A. V. Chirkov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Scientific Production Enterprise “GYCOM”Nizhny NovgorodRussia
  3. 3.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations