Advertisement

Radiophysics and Quantum Electronics

, Volume 58, Issue 6, pp 409–417 | Cite as

Simultaneous Ground-Based Microwave Measurements of the Middle-Atmosphere Ozone and Temperature

  • M. Yu. Kulikov
  • A. A. Krasil’nikov
  • A. A. Shvetsov
  • L. I. Fedoseev
  • V. G. Ryskin
  • L. M. Kukin
  • D. N. Mukhin
  • M. V. Belikovich
  • D. A. Karashtin
  • N. K. Skalyga
  • A. M. Feigin
Article

We present the results of the first simultaneous ground-based microwave measurements of the middle-atmosphere ozone and temperature performed at the beginning of 2012 above Nizhny Novgorod (56 N, 44 E) during a sudden stratospheric warming. The detected features of the atmosphere dynamics are compared with satellite sounding data from an MLS instrument onboard the Aura satellite.

Keywords

Ozone Ozone Concentration Brightness Temperature Middle Atmosphere Spatiotemporal Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    J. W. Waters, Nature, 242, 506 (1973).CrossRefADSGoogle Scholar
  3. 3.
    L. I.Fedoseev, V.G.Bozhkov, V.A.Genneberg, et al., Radiophys. Quantum Electron., 50, Nos. 10–11, 858 (2007).Google Scholar
  4. 4.
    L. I. Fedoseev, V.G.Bozhkov, V.A.Genneberg, and I. V. Petrov, RF Patent No. 2488941 “An electrically controlled millimeter-wave modulator–calibrator” [in Russian], claimed on April 27, 2012, published on July 27, 2013, Bulletin No. 21.Google Scholar
  5. 5.
    A. A. Shvetsov, L. I. Fedoseev, D. A. Karashtin, et al., Radiophys. Quantum Electron., 53, Nos. 5–6, 321 (2010)CrossRefADSGoogle Scholar
  6. 6.
    A. A. Shvetsov, D. A. Karashtin, L. I. Fedoseev, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 569 (2011).ADSGoogle Scholar
  7. 7.
    D. N. Mukhin, A.M. Feigin, Ya. I. Molkov, et al., Adv. Space Res., 37, No. 12, 2292 (2006).Google Scholar
  8. 8.
    D. L. Phillips, J. Assoc. Comput. Mach., 9, 84 (1962).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. N. Tikhonov, Dokl. Akad. Nauk SSSR, 153, No. 1, 49 (1963).MathSciNetGoogle Scholar
  10. 10.
    M. T. Chahine, J. Opt. Soc. Am., 58, No. 12, 1634 (1968).CrossRefADSGoogle Scholar
  11. 11.
    A. K. Randegger, Pure Appl. Geophys., 118, 1052 (1980).CrossRefADSGoogle Scholar
  12. 12.
    C. D. Rodgers, J. Geophys. Res. D, 95, No. 5, 5587 (1990).CrossRefADSGoogle Scholar
  13. 13.
    D. A. Karashtin, D. N. Mukhin, N. K. Skalyga, et al., Bul. Rus. Acad. Sci. Phys., 73, No. 12, 1642 (2009).CrossRefGoogle Scholar
  14. 14.
    D. A. Karashtin, D. N. Mukhin, N. K. Skalyga, et al., Radiophys. Quantum Electron., 52, No. 10, 705 (2009).CrossRefADSGoogle Scholar
  15. 15.
    P.W. Rosenkranz, Radio Sci ., 33, 919 (1998).CrossRefADSGoogle Scholar
  16. 16.
    M. Yu. Kulikov, A.M. Feigin, and G.R. Sonnemann, Atmos. Chem. Phys., 9, 8199 (2009).CrossRefADSGoogle Scholar
  17. 17.
    M. Yu. Kulikov, D. N. Mukhin, and A.M. Feigin, Radiophys. Quantum Electron., 52, No. 9, 618 (2009).CrossRefADSGoogle Scholar
  18. 18.
    A. A.Krasil’nikov, M.Yu.Kulikov, L.M.Koukin, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 628 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. Yu. Kulikov
    • 1
    • 2
  • A. A. Krasil’nikov
    • 1
  • A. A. Shvetsov
    • 1
    • 2
  • L. I. Fedoseev
    • 1
  • V. G. Ryskin
    • 1
  • L. M. Kukin
    • 1
  • D. N. Mukhin
    • 1
    • 2
  • M. V. Belikovich
    • 1
    • 2
  • D. A. Karashtin
    • 1
    • 2
  • N. K. Skalyga
    • 1
  • A. M. Feigin
    • 1
    • 2
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesMoskvaRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations