Advertisement

Radiophysics and Quantum Electronics

, Volume 58, Issue 3, pp 173–184 | Cite as

Modeling of the Intracloud Lightning Discharge Radio Emission

  • D. I. Iudin
  • F. D. Iudin
  • M. Hayakawa
Article

This paper aims at analyzing the broadband part of electromagnetic emission from thunderclouds in a frequency range of tens of kilohertz to hundreds of megahertz. A model of the intracloud lightning discharge formation is presented. The lightning formation is described as a stochastic growth of the branching discharge channels, which is determined by the electrostatic field. The dynamics of the electric field and of the charge distribution over the lightning structure is calculated deterministically. The effect of the initial charge density in the cloud and the parameters of the conducting channels on spatio-temporal characteristics of the currents and structure of the lightning discharge is studied. The discharge radio emission is calculated by summing up the radiation fields of each channel at the observation point. The standard model for a separate discharge current is adopted, and the electromagnetic radiation in the far zone is estimated. It is found that the obtained frequency spectra exhibit a universal power-law behavior. The results of the modeling agree with known experimental data.

Keywords

Radio Emission Percolation Model Lightning Discharge Electromagnetic Emission Discharge Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Rakov and M. A. Uman, Lightning, Physics, and Effects, Cambridge University Press (2003).Google Scholar
  2. 2.
    D. E. Proctor, J. Geophys. Res., 76, 1478 (1971).CrossRefADSGoogle Scholar
  3. 3.
    R. J.Thomas, P.R.Krehbiel, W.Rison, et al., Geophys. Res. Lett ., 28, No. 1, 143 (2001).CrossRefADSGoogle Scholar
  4. 4.
    D. I. Iudin and V.Yu.Trakhtengerts, Fiz. Atmos. Okeana, 36, No. 5, 597 (2000).Google Scholar
  5. 5.
    A.P. Nickolaenko, C.Price, and D. I. Iudin, Geophys. Res. Lett ., 27, 3185 (2000).CrossRefADSGoogle Scholar
  6. 6.
    D. I. Iudin and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 44, Nos. 5–6, 386 (2001).CrossRefGoogle Scholar
  7. 7.
    E.R.Mansell, D.R. MacGorman, C. L. Ziegler, and J.M. Straka, J. Geophys. Res. D, 107, No. 9, 4075 (2002).CrossRefADSGoogle Scholar
  8. 8.
    D. I. Iudin, V.Yu.Trakhtengerts, and M.Hayakawa, Phys. Rev. E, 68, 016601 (2003).CrossRefADSGoogle Scholar
  9. 9.
    P. R.Krehbiel, J.A.Riousset, V. P. Pasko, et al., Nature, 1, 233 (2008).Google Scholar
  10. 10.
    E.A.Mareev, D. I. Iudin, V.Yu.Trakhtengerts, et al., Proekt. Tekhnol. Élektron. Sredstv ., 4, 7 (2004).Google Scholar
  11. 11.
    P. Bak, C.Tang, and K. Wiesenfeld, Phys. Rev. Lett ., 59, 381 (1987).MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    P. Bak, C.Tang, and K. Wiesenfeld, Phys. Rev. A, 38, 364 (1988).MATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    P. Bak, How Nature Works (The Science of Self-Organized Criticality), Oxford Univ. Press (1997).Google Scholar
  14. 14.
    H. J. Jensen, Self-Organized Criticality, Cambridge Univ. Press (1998).Google Scholar
  15. 15.
    G.Vecchi, D. Labate, and E.Canavero, Radio Sci ., 29, No. 4, 691 (1994).CrossRefADSGoogle Scholar
  16. 16.
    D. M. Le Vine and R. Meneghini, Radio Sci ., 13, No. 5, 801 (1978).CrossRefADSGoogle Scholar
  17. 17.
    D. M. Le Vine and R. Meneghini, J. Geophys. Res., 83, 2377 (1978).CrossRefADSGoogle Scholar
  18. 18.
    M. Hayakawa, F.Yokose, Y. Ida, and D. I. Iudin, J. Atmos. Electricity, 26, No. 2, 51 (2006).Google Scholar
  19. 19.
    D. I. Iudin, V. Y.Trakhtengerts, and A.N.Grigoriev, Nuclear Instruments & Methods in Physics Research A, 502, 526 (2003).CrossRefADSGoogle Scholar
  20. 20.
    M. Hayakawa, T.Nakamura, D. Iudin, et al., J. Geophys. Res. D, 110, No. 6, D06104 (2005).ADSGoogle Scholar
  21. 21.
    L. Niemeyer, L. Pietronero., and H. J.Wiesmann, Phys. Rev. Lett ., 52, No. 12, 1033 (1984).MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    H. J. Wiesmann and H.R. Zeller, J. Appl. Phys., 60, 1770 (1986).CrossRefADSGoogle Scholar
  23. 23.
    N. Femia, L. Niemeyer, and V.Tucci, J. Phys. D, 26, 619 (1993).CrossRefADSGoogle Scholar
  24. 24.
    M. Hayakawa, D. I. Iudin, V. Y.Trakhtengerts, J. Atmos. Solar-Terr. Phys., 70, 1660 (2008).CrossRefADSGoogle Scholar
  25. 25.
    X. Gou, X. M.Chen, Y.Du, and W.Dong, Geophys. Res. Lett ., 37, L11808 (2010).ADSGoogle Scholar
  26. 26.
    V. Y.Trakhtengerts, D. I. Iudin, and A.V.Kulchitsky, Phys. Plasmas, 9, No. 6, 2762 (2002).CrossRefADSGoogle Scholar
  27. 27.
    V. Y.Trakhtengerts, D. I. Iudin, A. V.Kulchitsky, and M. Hayakawa, Phys. Plasmas, 10, No. 8, 3290 (2003).CrossRefADSGoogle Scholar
  28. 28.
    P. R. Krehbiel, in: R. L.Gardner, ed., The Earth’s Electrical Environment, National Academy Press, Washington (1986), p. 90.Google Scholar
  29. 29.
    E. R. Williams, J. Geophys. Res. D, 94, No. 11, 13151 (1989).CrossRefADSGoogle Scholar
  30. 30.
    J. A.Riousset, V.P. Pasko, P.R.Krehbiel, et al., J. Geophys. Res., 112, D15203 (2007).CrossRefADSGoogle Scholar
  31. 31.
    T.C. Marshall, M. P.McCarthy, and W. D. Rust, J. Geophys. Res. D, 100, No. 4, 7097 (1995).CrossRefADSGoogle Scholar
  32. 32.
    V.P. Pasko, U. S. Inan, and T. F. Bell, Geophys. Res. Lett ., 27, No. 23, 497 (2000).CrossRefADSGoogle Scholar
  33. 33.
    Yu.P.Raizer, Gas Discharge Physics, Springer, Berlin (2011).Google Scholar
  34. 34.
    I. Gallimberti, G. Bacchiega, A. Bondiou-Glergerie, and P. Lalande, Comptes Rendus-Physique, 3, No. 10, 1335 (2002).CrossRefADSGoogle Scholar
  35. 35.
    D. I. Iudin, in: Nonlinear Waves—2012, Inst. Appl. Phys., Rus. Acad. Sci., Nizhny Novgorod (2013), p. 67.Google Scholar
  36. 36.
    V.Yu.Trakhtengerts, Dokl. Akad. Nauk SSSR, 308, 584 (1989).Google Scholar
  37. 37.
    S. Adalev, M.Hayakawa, N. V.Korovkin, et al., IEICE Electron. Express, 3, No. 10, 209 (2006).CrossRefGoogle Scholar
  38. 38.
    S. Adalev, M.Hayakawa, N. V.Korovkin, et al., J. Appl. Phys., 101, 083302 (2007).CrossRefADSGoogle Scholar
  39. 39.
    J. M. Bazelyan and Yu.P.Raizer, Spark Discharge, CRC Press, Boca Raton, New York (1998).Google Scholar
  40. 40.
    M.Boulch, J.Hamelin, and C. Weidman, in: R. L.Gardner, ed., Lightning Electromagnetics (1987), p. 287.Google Scholar
  41. 41.
    D.E. Proctor, R. Uytenbogaargt, and B. M. Meredith, J. Geophys. Res. D, 93, No. 10, 12683 (1988).CrossRefADSGoogle Scholar
  42. 42.
    D. R. MacGorman and W. D. Rust, The Electrical Nature of Storms, Oxford Univ. Press (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.University of Electrical CommunicationsTokyoJapan

Personalised recommendations