Advertisement

Radiophysics and Quantum Electronics

, Volume 58, Issue 2, pp 79–91 | Cite as

Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma

  • L. F. Chernogor
  • S. V. Panasenko
  • V. L. Frolov
  • I. F. Domnin
Article

Characteristics of the wave disturbances of the ionospheric electron number density were measured using the Kharkov incoherent scatter radar. The disturbance generation accompanied the SURA heating of the near-Earth plasma by high-power periodic radiation. The distance between the heater and the radar was about 960 km. The possibility of generating ionospheric wave disturbances with a period of 20 to 30 min in the internal gravity wave range was confirmed. The disturbance propagation velocity was near 320–400 m/s, and the relative amplitude of the electron density variation was 1–10%. The wave disturbances appeared in the altitude range 145–235 km. Aperiodic bursts of the electron number density with a relative amplitude of up to 5–10% were detected after the first switch-ons of periodic radiation in the 30-min heating — 30-min pause regime at altitudes of 145 to 310 km. The observation results generally conform to the synchronous observation data obtained using the Kharkov vertical-sounding Doppler radar and a network of ionosondes.

Keywords

Electron Number Density Ionospheric Disturbance Scattered Signal Wave Disturbance Doppler Radar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. I. Grigor’ev, Radiophys. Quantum Electron., 18, No. 12, 1335 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    A. N.Karashtin, N. A. Mityakov, V.O.Rapoport, and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 20, No. 5, 540 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    L. F. .Chernogor, Radiofiz. Radioastron., 17, No. 3, 240 (2012).Google Scholar
  4. 4.
    K.P. Garmash, L. F.Chernogor, and A. B. Shvartsburg, Komp. Opt ., No. 6, 62 (1989).Google Scholar
  5. 5.
    O. V.Pakhomova and L. F.Chernogor, Vestnik Kharkov Univ., Ser. “Radiofiz. Élektron”, No. 318, 29 (1988).Google Scholar
  6. 6.
    L. F.Chernogor, Geomagn. Aéron., 29, No. 3, 513 (1989).ADSGoogle Scholar
  7. 7.
    V. A. Misyura, O. V. Pakhomova, and L. F.Chernogor, Kosmich. Nauka Tekh., No. 4, 72 (1989).Google Scholar
  8. 8.
    K.P. Garmash, A. I. Gritchin, A.A.Gubarev, et al., in: em Proc. of the Research Institute of Radio [in Russian], Radio i Svyaz’, Moscow (1989), No. 9, p 57.Google Scholar
  9. 9.
    O. V.Pakhomova and L. F.Chernogor, Kosm. Nauka Tekh., No. 5, 71 (1990).Google Scholar
  10. 10.
    L. S.Kostrov and L. F.Chernogor, Geomagn. Aéron., 30, No. 1, 159 (1990).ADSGoogle Scholar
  11. 11.
    K.P. Garmash and L. F.Chernogor, Zarub. Radioélektron. Usp. Sovrem. Radioélektron., No. 6, 17 (1998).Google Scholar
  12. 12.
    K.P. Garmash and L. F.Chernogor, Élektromag. Yavlen., 1, No. 1, 90 (1998).Google Scholar
  13. 13.
    L. F.Chernogor, Radiofiz. Radioastron., 14, No. 4, 377 (2009).Google Scholar
  14. 14.
    V.P. Burmaka, I. F. Domnin, V. P.Uryadov, and L. F.Chernogor, Radiophys. Quantum Electron., 52, No. 11, 774 (2009).CrossRefGoogle Scholar
  15. 15.
    L. F.Chernogor, V. L. Frolov, G. P.Komrakov, and V. F. Pushin, Radiophys. Quantum Electron., 54, No. 2, 75 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    L. F.Chernogor and V. L. Frolov, Radiophys. Quantum Electron., 55, Nos. 1–2, 13 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    I. F. Domnin, S.V. Panasenko, V. P.Uryadov, and L. F.Chernogor, Radiophys. Quantum Electron., 55, No. 4, 253 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    L. F.Chernogor, V. L. Frolov, and V. F.Pushin, Radiophys. Quantum Electron., 55, No. 5, 296 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    L. F.Chernogor and V. L. Frolov, Radiophys. Quantum Electron., 56, No. 4, 197 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    L. F.Chernogor and V. L. Frolov, Radiophys. Quantum Electron., 56, No. 5, 276 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    E. Mishin, E. Sutton, G. Milikh, et al., Geophys. Res. Lett ., 39, L11101 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    A. V. Bogomaz and D.V.Kotov, Vestnik Nats. Tekh. Univ. “Kharkov Politekh. Inst.” Radiofiz. Ionosfera, No. 28, 29 (2013).Google Scholar
  23. 23.
    G.Kirchengast, K. Hocke, and K. Shlegel, Radio Sci ., 30, No. 5, 1551 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    K.Hocke, K. Shlegel, and Kirchengast, J. Atm. Terr. Phys., 58, Nos. 1–4, 245 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    L. F.Chernogor, I. F.Domnin, S. V.Panasenko, and V. P.Uryadov, Radiophys. Quantum Electron., 55, No. 3, 156 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    L. F.Chernogor, Radiofiz. Radioastron., 18, No. 1, 49 (2013).Google Scholar
  27. 27.
    L. F.Chernogor, V. L. Frolov, and V.V.Barabash, Radiophys. Quantum Electron., 57, No. 2, 100 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • L. F. Chernogor
    • 1
    • 2
  • S. V. Panasenko
    • 1
  • V. L. Frolov
    • 3
    • 4
  • I. F. Domnin
    • 1
  1. 1.Institute of the Ionosphere of the National Academy of Sciences and Ministry of Education and Science of UkraineKharkovUkraine
  2. 2.V. N. Karazin National University of KharkovKharkovUkraine
  3. 3.Radiophysical Research InstituteNizhny NovgorodRussia
  4. 4.Kazan (Volga) Federal UniversityKazanRussia

Personalised recommendations