Advertisement

Radiophysics and Quantum Electronics

, Volume 57, Issue 11, pp 782–794 | Cite as

Studying the Effect of the Local Thunderstorm Cells on the Background ULF Magnetic Noise Parameter Spectra

  • E. N. Ermakova
  • D. S. Kotik
  • A. V. Ryabov
  • A. A. Panyutin
Article

We study the effect of the masking factor from the local thunderstorm cells on ULF magnetic field spectra with the inhomogeneous electron-density structures existing in the local ionosphere (ionospheric and lower ionospheric Alfvén resonators). Using an original data-processing technique for recording of horizontal magnetic components at the midlatitude reception point Novaya Zhizn’, we have examined the contribution of the sources located at different distances from the reception point to the formation of the background noise spectra. The ULF signal processing technique permitted us to reduce the pulse component of magnetic noise in amplitude above a certain threshold and thus rule out the effect of a local thunderstorm activity. Frequency dependences of the azimuthal angle of the principal axis of the magnetic noise polarization ellipse are also analyzed. It is shown that the presence of the lower ionospheric Alfvén resonator leads to a nonmonotonic dependence of the azimuthal angle on the frequency. It was found that the local thunderstorms within 6080 km from the reception point completely mask the manifestation of the lower ionospheric Alfvén resonator in the ULF noise polarization parameters. To spot the local thunderstorm cells, we used the data from the meteorological radar facility MRL-4 in Nizhny Novgorod.

Keywords

Azimuthal Angle Reception Point Polarization Parameter Thunderstorm Activity Polarization Ellipse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. P. Belyaev, S. B. Polyakov, V. O. Rapoport, and V. Yu. Trakhtengerts, Sov. Phys., 32, 983 (1987).Google Scholar
  2. 2.
    E. N. Ermakova, D. S. Kotik, and S. V. Polyakov, Radiophys. Quantum Electron., 51, No. 7, 519 (2008).CrossRefADSGoogle Scholar
  3. 3.
    E. N. Ermakova, D. S.Kotik, S. V. Polyakov, and A. V. Shchennikov, Radiophys. Quantum Electron., 50, No. 7, 556 (2007).CrossRefADSGoogle Scholar
  4. 4.
    E. N. Ermakova, D. S. Kotik, A. V. Pershin, et al., Radiophys. Quantum Electron., 55, Nos. 10–11, 605 (2012).ADSGoogle Scholar
  5. 5.
    A. Schekotov, V. Pilipenko, K. Shiokawa, and E. Fedorov, Earth Planets Space, 63, 1 (2011).CrossRefGoogle Scholar
  6. 6.
    S. V. Polyakov, E. N. Ermakova, A. S. Polyakov, and M. N. Yakunin, Geomagn. Aeron., 43, No. 2, 223 (2003).Google Scholar
  7. 7.
    V. V. Kirillov and V. N. Kopeikin, Radiophys. Quantum Electron., 46, No. 1, 1 (2003).CrossRefADSGoogle Scholar
  8. 8.
    M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. N. Ermakova
    • 1
  • D. S. Kotik
    • 1
  • A. V. Ryabov
    • 1
  • A. A. Panyutin
    • 2
  1. 1.Radiophysical Research InstituteNizhny NovgorodRussia
  2. 2.Upper-Volga Department of Hydrometeorology and Environmental MonitoringNizhny NovgorodRussia

Personalised recommendations