Advertisement

Radiophysics and Quantum Electronics

, Volume 57, Issue 8–9, pp 672–679 | Cite as

Four-Wave Interaction on Resonance and Thermal Nonlinearities in a Scheme with Concurrent Pump Waves for High Conversion Coefficients

  • A. A. Akimov
  • V. V. Ivakhnik
  • V. I. Nikonov
Article

We have obtained the dependences of the conversion coefficient and the bandwidth of spatial frequencies on the intensity of pump waves for a four-wave converter of radiation for the resonance and thermal nonlinearity in a scheme with concurrent pump waves. The connection between the conversion coefficient and spatial selectivity of a four-wave radiation converter has been found.

Keywords

Spatial Frequency Signal Wave Nonlinear Medium Pump Wave Spatial Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Ya. Zel’dovich, N. Ya. Pilipetskiy, and V. V. Shkunov, Wave Front Conjugation [in Russian], Nauka, Moscow (1985).Google Scholar
  2. 2.
    V. V. Ivakhnik, Wave Front Conjugation at Four-Wave Mixing [in Russian], Samara State Univ., Samara (2010).Google Scholar
  3. 3.
    V. G. Dmitriev, Nonlinear Optics and Wave Front Conjugation [in Russian], Fizmatlit (2003).Google Scholar
  4. 4.
    C. Xue-Mei, C. Hao-Wei, W. Jian, et al., Chin. Phys. Lett., 29, No. 7, 1 (2012).Google Scholar
  5. 5.
    K. Hagiwara, A. Okamoto, H. Hiroyuki Kaneko, et al., Electron. Commun. Japan., 80, No. 4, 67 (1997).Google Scholar
  6. 6.
    S. Watanabe, T. Naito, and T. Chikama, IEEE Photon. Technol. Lett., 5, No. 1, 92 (1993).CrossRefADSGoogle Scholar
  7. 7.
    S. Watanabe, T. Chikama, G. Ishikawa, et al., IEEE Photon. Technol. Lett., 5, No. 10, 1241 (1993).CrossRefADSGoogle Scholar
  8. 8.
    E. K. Kirilenko, Quantum Electron., 16, No. 7, 930 (1989).ADSGoogle Scholar
  9. 9.
    V. V. Zherdienko, S. A. Lesnik, and A. I. Khizhnyak, Ukrain. Fiz. Zhurn., 30, No. 12, 1788 (1985).Google Scholar
  10. 10.
    A. P. Sukhorukov and V. A. Trofimov, Izv. AN SSSR, Ser. Fiz., 51, No. 2, 340 (1987).Google Scholar
  11. 11.
    V. V. Ivakhnik, E. G. Martasova, and V. I. Nikonov, Optika i Spektroskop., 70, No. 1, 118 (1991).Google Scholar
  12. 12.
    V. V. Ivakhnik, V. I. Nikonov, and T. G. Kharskaya, Komputer. Optika, 30, No. 2, p. 4 (2006).Google Scholar
  13. 13.
    A. M. A. Majles, S. Mehrabani, and R. Malekfar, Adv. Nonlin. Opt., 2009, 1 (2009).CrossRefGoogle Scholar
  14. 14.
    O. Ormachea and A. L. Tolstik, Bull. Rus. Acad. Sci. Phys., 71, No. 1, 126 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Ch. Mo, A. L. Tolstik, and A. V. Chaley, Vestnik Belarus. Gos. Univ., No. 1, 9 (1991).Google Scholar
  16. 16.
    E. V. Ivakin, and V. V. Kabanov, Izv. NAN Belarus, Ser. Fiz. Mat., No. 2, 32 (2013).Google Scholar
  17. 17.
    A. A. Akimov, V.V. Ivakhnik, and V. I. Nikonov, Optics Spectrosc., 115, No. 3, 384 (2013).CrossRefADSGoogle Scholar
  18. 18.
    M. G. Kucherenko and A. P. Rusinov, Quantum Electron., 34, No. 8, 779 (2004).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. A. Akimov
    • 1
  • V. V. Ivakhnik
    • 1
  • V. I. Nikonov
    • 1
  1. 1.Samara State UniversitySamaraRussia

Personalised recommendations