Radiophysics and Quantum Electronics

, Volume 57, Issue 8–9, pp 627–634 | Cite as

On Modeling of the Biological Memory Associative Properties by the Volume Superimposed Holograms Technique

  • V. V. Orlov
  • A. V. Pavlov

We consider two phenomena that are typical of the volume superimposed holograms, namely, the formation of the dielectric-permittivity structures corresponding to interference of the reference waves, which did not interfere in reality, due to the nonlinearity of the medium, and double diffraction of the waves in the hologram volume. It is shown that when the holograms are recovered, these mechanisms form associations between the waves which are not linked explicitly by virtue of the different-time record of individual holograms. The strengths of the associative links are proportional to the scalar product of the signal images. A neural network model that allows for the described mechanisms as related to recording of the volume superimposed holograms using the Fourier holography scheme with plane off-axis reference beams is proposed.


Signal Wave Reference Beam Reference Wave Recovered Image Hologram Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. H. Pribram, in: Cynergetics and Psychology, Issue 1, Methodological Issues [Russian translation], MGSU Soyuz, Moscow (1997), p. 156.Google Scholar
  2. 2.
    K. H. Pribram, Scientific American, 220, 73 (1969).CrossRefADSGoogle Scholar
  3. 3.
    D. Gabor, IBM J. Res. Develop., 13, No. 2, 156 (1969).CrossRefMathSciNetGoogle Scholar
  4. 4.
    A. L. Mikaelyan, Radiotekh. Élektron., 14, No. 1, 115 (1969).Google Scholar
  5. 5.
    P. E. Tverdokhleb, in: Proc. All-Russia Seminar “Yury Nikolaevich Denisyuk is the Founder of National Holography” [in Russian], A. F. Ioffe FTI, St. Petersburg, p. 65 (2007).Google Scholar
  6. 6.
    E. G. Paek and D. Psaltis, Opt. Eng., 26, No. 5, 428 (1987).CrossRefADSGoogle Scholar
  7. 7.
    Y. Owechko, G. J. Dunning, E. Marom, and B.H. Soffer, Appl. Opt., 26, 1900 (1987).CrossRefADSGoogle Scholar
  8. 8.
    O.P. Kuznetsov, J. Opt. Tech., 70, No. 8, 548 (2003).CrossRefGoogle Scholar
  9. 9.
    F. T. S. Yu and J. Suganda, Optical Signal Processing, Computing, and Neural Networks, Wiley, New York (1992).Google Scholar
  10. 10.
    A. V. Pavlov, J. Comput. Syst. Sci. Int., 42, No. 2, 275 (2003).MATHGoogle Scholar
  11. 11.
    A. V. Pavlov, Nov. Iskusstv. Intel., No. 2, 41 (2006).Google Scholar
  12. 12.
    A. V. Pavlov, Iskusst. Intel. Prinyat. Reshen., 1, 3 (2010).Google Scholar
  13. 13.
    V. V. Orlov, J. Opt. Tech., 73, No. 9, 646 (2006).CrossRefGoogle Scholar
  14. 14.
    V. V. Orlov, J. Opt. Tech., 78, No. 9, 598 (2011).CrossRefGoogle Scholar
  15. 15.
    V. V. Orlov, Tech. Phys. Lett., 30, No. 12, 1054 (2004).CrossRefADSGoogle Scholar
  16. 16.
    V. V. Orlov, Opt. Spektrosc., 92, No. 4, 619 (2002).CrossRefADSGoogle Scholar
  17. 17.
    V. V. Orlov, Opt. Spektrosc., 92, No. 5, 795 (2002).CrossRefADSGoogle Scholar
  18. 18.
    I. McMichael, W. Christian, D. Pletcher, et al.. Appl. Opt., 35, No. 14, 2375 (1996).CrossRefADSGoogle Scholar
  19. 19.
    G. N. Borisyuk, R.M. Borisyuk, Ya. B. Kazanovich, and G.R. Ivanitskii, Phys. Usp., 45, No. 10, 1073 (2002).CrossRefADSGoogle Scholar
  20. 20.
    A. V. Pavlov, Opt. Spektrosk., 76, No. 5, 794 (1994).ADSGoogle Scholar
  21. 21.
    G. A. Golitsyn and I. B. Fominykh, Nov. Iskusstv. Intel., No. 4, 121 (1996).Google Scholar
  22. 22.
    A. V. Pavlov, Iskussst. Intel. Prinyat. Rechen., No. 1, 3 (2010).Google Scholar
  23. 23.
    E. I. Shubnikov, Opt. Spektrosk., 62, No. 2, 450 (1987).Google Scholar
  24. 24.
    V. I. Korogodin, Information and the Life Phenomenon [in Russian], Akad. Nauk SSSR, Pushchino (1991).Google Scholar
  25. 25.
    P.K. Anokhin, Key Problems in the Theory of a Functional System [in Russian], URSS, Moscow (1980).Google Scholar
  26. 26.
    K.V. Sudakov, Biology Bull., 39, No. 1, 57 (2012).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Research University of Information Technologies, Mechanics and Optics of St. PetersburgSt. PetersburgRussia

Personalised recommendations