Radiophysics and Quantum Electronics

, Volume 57, Issue 7, pp 519–525 | Cite as

Study of the Possibility to Switch the TE01 Mode of a Circular Waveguide Using the Multipactor Discharge in Crossed Fields

  • A. A. Vikharev
  • E. V. Ilyakov
  • S. V. Kuzikov
  • I. S. Kulagin

We demonstrate experimentally that it is possible to control the symmetric TE01 mode of a circular waveguide, whose microwave electric field is equal to zero at the wall), using the multipactor discharge in the crossed electric and magnetic fields, which is excited by the TM01 mode in a cylindrical cavity. The characteristic time of cavity switching is determined by the cavity Q-factor and is equal to 150–200 ns. The experiments show that the proposed scheme allows reflecting the energy flow of switched radiation almost completely.


Resonant Frequency Cylindrical Cavity Electron Number Density Rectangular Waveguide Circular Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. T. Farnsworth, J. Franklin Inst., 218, No. 4, 411 (1934).CrossRefGoogle Scholar
  2. 2.
    I. N. Slivkov, Processes under High Voltage in Vacuum [in Russian], Énergoatomizdat, Moscow (1986).Google Scholar
  3. 3.
    S. Brown, Elementary Processes in Gas Discharge, MIT Press, Cambridge, Ma. (1959).Google Scholar
  4. 4.
    O. L. Gaddy and D. F. Holshoser, Proc. IEEE, 51, No. 1, 153 (1963).CrossRefGoogle Scholar
  5. 5.
    D. A. Ganichev, V. A. Filatov, and S.A. Fridrikhov, Radiotekh. Élektron., 17, No. 8, 1639 (1972).Google Scholar
  6. 6.
    V. Semenov, V. Nechaev, and E. Rakova, in: Proc. Int. Workshop on Strong Microwaves in Plasmas, Vol. 2., Inst. Appl. Phys., Nizhny Novgorod (2006), p. 635.Google Scholar
  7. 7.
    R. Fuks, Microwave J., 54, No. 5, 206 (2011).Google Scholar
  8. 8.
    Yu. Ming, IEEE Microwave Mag., 8, No. 5, 88 (2007).CrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Forrer and C. Milazzo, Proc. IRE, 50, No. 4, 442 (1962).CrossRefGoogle Scholar
  10. 10.
    A. F. Aleksandrov, L. G. Blyakhman, S. Yu. Galuzo, and V. E. Nechaev, in: Relativistic High-Frequency Electronics, Vol. 3 [in Russian], Inst. Appl. Phys., Gorky (1983), p. 219.Google Scholar
  11. 11.
    E. V. Ilyakov, G. S. Korablyov, I. S. Kulagin, and N. I. Zaitsev, IEEE Trans. Plasma Sci., 26, No. 3, 332 (1998).CrossRefADSGoogle Scholar
  12. 12.
    A. G. Sazontov, V. V. Nechaev, and N. K. Vdovicheva, IEEE Trans. Plasma Sci., 40, No. 2, 451 (2012).CrossRefADSGoogle Scholar
  13. 13.
    M. A. Gusarova, V. I. Kaminsky, L. V. Kravchuk, et al., Nucl. Instrum. Meth. Phys. Res. A, 599, No. 1, 100 (2009).CrossRefADSGoogle Scholar
  14. 14.
    L. G. Blyakhman, M. A. Gorshkova, and V. E. Nechaev, Radiophys. Quantum Electron., 43, No. 11, 904 (2000).CrossRefGoogle Scholar
  15. 15.
    E. V. Ilyakov, I. S. Kulagin, and V. E. Nechaev, Radiophys. Quantum Electron., 52, No. 12, 885 (2009).CrossRefADSGoogle Scholar
  16. 16.
    A. A. Vikharev, E. V. Ilyakov, S. V. Kuzikov, and I. S. Kulagin, Radiophys. Quantum Electron., 54, No. 12, 820 (2011).CrossRefADSGoogle Scholar
  17. 17.
    E. V. Ilyakov and I. S. Kulagin, Radiophys. Quantum Electron., 56, No. 4, 228 (2013).CrossRefADSGoogle Scholar
  18. 18.
    I. M. Bronstein and B. S. Fraiman, Secondary Electron Emission [in Russian], Nauka, Moscow (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. A. Vikharev
    • 1
  • E. V. Ilyakov
    • 1
  • S. V. Kuzikov
    • 1
  • I. S. Kulagin
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations