Radiophysics and Quantum Electronics

, Volume 57, Issue 2, pp 141–150 | Cite as

Corrugation Profile for the Quasioptical Polarization Separator


We consider and classify the regime of separation of two orthogonally polarized E and H waves by using a reflecting metal diffraction grating, which sends all the energy of an incident wave with one polarization to the specular order of diffraction, and that of an incident wave with the other polarization, to the (−1)st order of diffraction (in this case, the autocollimation regime is used). The conditions of existence of such a regime are studied in the simplest cases (generalization of the approach presented in [1, 2] to the case of a sinusoidal surface), along with the possibility to construct more complex (nonsinusoidal) corrugation profiles, for which the specified regime has certain advantages, e.g., a wider bandwidth. Examples of such profiles are presented. The studies are performed on the basis of numerical solution of the problem of diffraction of a plane electromagnetic wave by a perfectly conducting corrugated surface within the framework of the integral-equation method employing the authors’ computer visualization code.


Grazing Angle Plane Electromagnetic Wave Sinusoidal Surface Corrugation Depth Corrugation Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Hirshfield, P.Kolchin, S.Kuzikov, and M.Petelin, in: Digest of the 25th Conf. on Infrared and Millimeter Waves, Beijing, 2000, p. 405.Google Scholar
  2. 2.
    D.Yu. Shchegol’kov, M. I.Petelin, and S.V. Kuzikov, Radiotekh. XXI Vek, No. 4, 52 (2010).Google Scholar
  3. 3.
    W.Manheimer, A. Fliflet, K. S.Germain, et al., Geophys. Res. Lett., 30, No. 3, 1103 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    J. M. Usoff, in: Proc. IEEE Radar Conf., Boston, 2007, p. 17.Google Scholar
  5. 5.
    W.Kasparek, M. I.Petelin, V. Erckmann, et al., Fusion Sci. Technol., 52, 281 (2007).Google Scholar
  6. 6.
    A. Bruschi, V. Erckmann, W.Kasparek, et al., IEEE Trans. Plasma Sci., 38, No. 6, 1427 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M.Petelin, V.Erckmann, J. L. Hirshfield, et al., IEEE Trans. Microwave Theor. Tech., 56, No. 5, 835 (2009).Google Scholar
  8. 8.
    Yu. I.Koshurinov, V. G. Pavel’ev, M. I. Petelin, et al., Tekh. Phys. Lett., 31, No. 8, 709 (2005).Google Scholar
  9. 9.
    V.Erckmann, W.Kasparek, Y.Koshurinov, et al., Fusion Sci. Technol., 55, No. 1, 23 (2009).Google Scholar
  10. 10.
    R. Petit, ed., Electromagnetic Theory of Gratings, Springer-Verlag, Heidelberg–New York (1980).Google Scholar
  11. 11.
    L. A.Vainshtein and A. I. Sukov, Radiotekh. Élektron., 19, No. 8, 1472 (1984).ADSGoogle Scholar
  12. 12.
    V.P. Shestopalov, A.A.Kirilenko, S.A.Masalov, and Yu. K. Sirenko, Resonance Scattering of Waves. Vol. 1, Diffraction Gratings [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  13. 13.
    L. A.Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).Google Scholar
  14. 14.
    B. Z.Katzenelenbaum, High-Frequency Electrodynamics [in Russian], Nauka, Moscow (1966).Google Scholar
  15. 15.
    R. B.Vaganov and B. Z.Katzenelenbaum, Fundamentals of the Diffraction Theory [in Russian], Nauka, Moscow (1982).Google Scholar
  16. 16.
    S. N. Vlasov and E. V.Koposova, Radiophys. Quantum Electron., 46, Nos. 5–6, 434 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    S. N. Vlasov, E. V. Koposova, and A. I. Lapshina, Radiophys. Quantum Electron., 49, No. 5, 354 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    E. V.Koposova and M. I.Petelin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 32, No. 9, 1178 (1989).Google Scholar
  19. 19.
    E. V. Koposova, Radiophys. Quantum Electron., 53, No. 4, 244 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    S. N. Vlasov, E. V.Koposova, Yu. I.Koshurinov, et al., Tech. Phys., 57, No. 7, 988 (2012).CrossRefGoogle Scholar
  21. 21.
    S. N. Vlasov, E. V.Koposova, Yu. I.Koshurinov, et al., Radiophys. Quantum Electron., 55, No. 6, 399 (2012).gyADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations