Skip to main content
Log in

Precision Sub-Doppler Millimeter and Submillimeter Lamb-Dip Spectrometer

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe a precision sub-Doppler millimeter and submillimeter-wave Lamb-dip spectrometer with a backward-wave oscillator as the radiation source. The effect of nonlinear saturation of the spectral transitions (the Lamb-dip method) is used. The spectrometer resolution (about 5–10 kHz) and the measurement accuracy of the absolute frequencies (of the order of 1 kHz) of molecular transitions in the frequency range below 0.5 THz are discussed. The spectrometer is designed for obtaining accurate radio-astronomy and molecular-spectroscopy experimental data, in particular, when seeking variation in the proton-to-electron mass ratio as a function of time and place in the Universe. The frequency records of the Lamb dips on the spectral lines of the CO, OCS, and H2O molecules, the results of measuring the center frequencies of some transitions, and comparison with the results of other works are presented. The high measurement accuracy allows us to use the molecular-transition frequencies as the secondary frequency standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Levshakov, M. G. Kozlov, and D. Reimers, Astrophys. J., 738, 26 (2011).

    Article  ADS  Google Scholar 

  2. A. V. Lapinov, S. A. Levshakov, M. G. Kozlov, et al., Vestn. RFFI, No. 1 (73), 111 (2012).

  3. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, Springer-Verlag, Berlin–Heidellberg (2003).

    Book  Google Scholar 

  4. V. S. Letokhov and V. P. Chebotaev, Sov. Phys. Uspekhi, 17, No. 4, 467 (1975).

    Article  ADS  Google Scholar 

  5. V. S. Letokhov and V. P. Chebotaev, Nonlinear Superhigh-Resolution Laser Spectroscopy [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  6. C. C. Costain, Can. J. Phys., 47, 2431 (1969).

    Article  ADS  Google Scholar 

  7. Yu. A. Dryagin, Radiophys. Quantum Electron., 13, No. 1, 107 (1970).

    Article  ADS  Google Scholar 

  8. G. Winnewisser, S. P. Belov, Th. Klaus, and R. Schieder, J. Mol. Spectrosc., 184, 468 (1997).

    Article  ADS  Google Scholar 

  9. G. Cazzoli, C. Puzzarini, and A. V. Lapinov, Astrophys. J., 592, L95 (2003).

    Article  ADS  Google Scholar 

  10. G. Yu. Golubiatnikov, A. V. Lapinov, A. Guarnieri, and R. Knöchel, J. Mol. Spectrosc., 234, 190 (2005).

    Article  ADS  Google Scholar 

  11. A. V. Lapinov, G. Yu. Golubiatnikov, V. N. Markov, and A. Guarnieri, Astron. Lett., 33, No. 2, 121 (2007).

    Article  ADS  Google Scholar 

  12. G. Yu. Golubiatnikov, V. N. Markov, A. Guarnieri, and R. Knöchel, J. Mol. Spectrosc., 240, 251 (2006).

    Article  ADS  Google Scholar 

  13. E. V. Baklanov and V. P. Chebotaev, Sov. Phys. JETP, 33, No. 2, 300 (1971).

    ADS  Google Scholar 

  14. V. P. Kochanov, S. G. Rautian, and A. M. Shalagin, Sov. Phys. JETP, 45, No. 4, 714 (1977).

    ADS  Google Scholar 

  15. M. C. Wiedner, G. Wieching, F. Bielau, et al., Astron. Astrophys., 454, L33 (2006).

    Article  ADS  Google Scholar 

  16. www.istokmw.ru/vakuumnie-generatori-maloy-moshnosti.

  17. www.thinksrs.com.

  18. J. Doose, A. Guarnieri, W. Neustock, et al., Z. Naturforsch. A, 44, 538 (1989).

    Google Scholar 

  19. A. F. Krupnov, M. Yu. Tretyakov, S. P. Belov, et al., J. Mol. Spectrosc., 280, 110 (2012).

    Article  ADS  Google Scholar 

  20. M. Danos and S. Geschwind, Phys. Rev., 91, No. 5, 1159 (1953).

    Article  ADS  Google Scholar 

  21. R. Karplus, Phys. Rev., 73, No. 9, 1027 (1948).

    Article  ADS  MATH  Google Scholar 

  22. J. Reid and D. Labrie, Appl. Phys. B, 26, 203 (1981).

    Article  ADS  Google Scholar 

  23. D. A. Landman, R. Roussel-Dupre, and G. Tanigawa, Astrophys. J., 261, 732 (1982).

    Article  ADS  Google Scholar 

  24. S. P. Belov, M. Yu. Tretyakov, and R. D. Suenram, Astrophys. J., 393, 848 (1992).

    Article  ADS  Google Scholar 

  25. G. Winnewisser, S. P. Belov, Th. Klaus, and R. Schieder, J. Mol. Spectrosc., 184, 468 (1997).

    Article  ADS  Google Scholar 

  26. C. Puzzarini, G. Cazzoli, M. E. Harding, et al., J. Chem. Phys., 131, 234304 (2009).

    Article  ADS  Google Scholar 

  27. G. Cazzoli, L. Dore, C. Puzzarini, and J. Gauss, Mol. Phys., 108, No. 18, 2335 (2010).

    Article  ADS  Google Scholar 

  28. G. Cazzoli, C. Puzzarini, M. E. Harding, and J. Gauss, Chem. Phys. Lett., 473, 21 (2009).

    Article  ADS  Google Scholar 

  29. M. A. Koshelev, M. Yu. Tretyakov, G. Yu. Golubiatnikov, et al., J. Mol. Spectrosc., 241, 101 (2007).

    Article  ADS  Google Scholar 

  30. http://spec.jpl.nasa.gov.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Golubiatnikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 8–9, pp. 666–677, August–September 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubiatnikov, G.Y., Belov, S.P., Leonov, I.I. et al. Precision Sub-Doppler Millimeter and Submillimeter Lamb-Dip Spectrometer. Radiophys Quantum El 56, 599–609 (2014). https://doi.org/10.1007/s11141-014-9464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9464-2

Keywords

Navigation