Skip to main content
Log in

Laser Ceramics Sintering by Millimeter-Wave Heating

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Prospects for using microwave radiation to sinter optically transparent ceramics are stipulated by the absence of the heaters and screens contaminating the sintered material and the presence of the inverse temperature distribution in the product, which allows one to fabricate maximum-density ceramics. In this work, we present the results of studying the process of producing optically transparent Yb:YAG and Yb:(LaY)2O3 ceramics when the samples are sintered in the chamber of a gyrotron complex operated at a frequency of 24 GHz. The various-composition samples were manufactured by compaction of a mixture of commercially available powders (Yb:YAG ceramics) and the powders prepared by the self-propagating high-temperature synthesis (Yb:(LaY)2O3 ceramics). The sintering temperatures were varied in the interval 1700–1900°C, the sintering time was varied from 2 to 20 h, and the residual-air pressure in the working chamber was 10 Pa. Lasing was obtained for the samples of both compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Tinga, Ceram. Trans., 80, 715 (1997).

    Google Scholar 

  2. M. Lombardi, A. W. Fliflet, D. Lewis, III et al., in: Proc. Joint 30th Conf. on Infrared Millimeter Waves and 13th Conf. on Terahertz Electronics, (2005), vol. 2, p. 389.

  3. M. A. Imam, A. W. Fliflet, S. H. Gold, et al., Mater. Sci. Forum, 654–656, 2002 (2010).

    Article  Google Scholar 

  4. M. Serantoni, A. Piancastelli, A. L. Costa, et al., Opt. Mater., 34, 995 (2012).

    Article  ADS  Google Scholar 

  5. A. Ikesue, Y.-L. Aung, T. Taira, et al., Ann. Rev. Mater. Res., 36, 397 (2006).

    Article  ADS  Google Scholar 

  6. S. S. Balabanov, E. M. Gavrishchuk, A. M. Kut’in, and D. A. Permin, Inorg. Mater., 47 No. 5, 484 (2011).

    Article  Google Scholar 

  7. W. H. Rhodes, J. Am. Ceram. Soc., 64, 13 (1981).

    Article  Google Scholar 

  8. S. S.Balabanov, Yu.V.Bykov, S.V. Egorov, et al., Quantum Electron., 47, 396 (2013).

    Article  ADS  Google Scholar 

  9. Yu. Bykov, A. Eremeev, M. Glyavin, et al., IEEE Trans. Plasma Sci., 32, 67 (2004).

    Article  ADS  Google Scholar 

  10. M. Bass, C. DeCusatis, J. Enoch, et al., Handbook of Optics, Vol. 4, McGraW-Hill, New York (2009).

    Google Scholar 

  11. L. Esposito, A. L. Costa, V. Medri, et al., J. Eur. Ceram. Soc., 28, 1065 (2008).

    Article  Google Scholar 

  12. L. Esposito, A. Piancastelli, A. L.Costa, et al., Opt. Mater., 33, 346 (2011).

    Article  ADS  Google Scholar 

  13. L. Esposito, T. Epicier, M. Serantoni, et al., J. Eur. Ceram. Soc., 32, 2273 (2012).

    Article  Google Scholar 

  14. A. Maitre, C. Salle, R. Boulesteix, et al., J. Am. Ceram. Soc., 91, 406 (2008).

    Article  Google Scholar 

  15. Ch. Chen, Sh. Zhou, H. Lin, et al., Proc. SPIE, 8206, 820620 (2012).

    Article  Google Scholar 

  16. A. J. Stevenson, X. Li, M. A. Martinez, et al., J. Am. Ceram. Soc., 94, 1380 (2011).

    Article  Google Scholar 

  17. M. M. Kuklja, J. Phys., Condens. Matter, 12, 2953 (2000).

    Google Scholar 

  18. A. Ikesue and K. Yoshida, J. Mater. Sci., 34, 1189 (1999).

    Article  ADS  Google Scholar 

  19. Y. Li, Sh. Zhou, H. Lin, et al., J. Alloys Compounds, 502, 225 (2010).

    Article  Google Scholar 

  20. Yu. V. Bykov, K. I. Rybakov, and V. E. Semenov, Nanotekhnol. Rus., 6, Nos. 9–10, 647 (2011).

  21. K. I. Rybakov, E. A. Olevsky, and E. V. Krikun, J. Am. Ceram. Soc., 96, 1003 (2013).

    Article  Google Scholar 

  22. K. I. Rybakov and V. E. Semenov, Phys. Rev. B, 49, 464 (1994).

    Article  ADS  Google Scholar 

  23. K. I. Rybakov and V. E. Semenov, Phys. Rev. B, 52, 3030 (1995).

    Article  ADS  Google Scholar 

  24. J. Maier and J. Jamnik, in: Proc. Symp. “Microwaves: Theory and Applications Materials Processing IV,” 1997, p. 123.

  25. Y. C. Kim, C.H. Kim, and D. K. Kim, J. Eur. Ceram. Soc., 22, 1625 (1997).

    Article  Google Scholar 

  26. M. J. Jones, M.-C. Valesillos, K. Hirao, et al., J. Am. Ceram. Soc., 84, 2424 (2001).

    Article  Google Scholar 

  27. A. Goldstein, W. D. Kaplan, and A. Singuridi, J. Eur. Ceram. Soc., 22, 1891 (2002).

    Article  Google Scholar 

  28. M. Yasuoka, T. Shirai, and K. Watari, J. Therm. Anal. Calorim., 93, 59 (2008).

    Article  Google Scholar 

  29. L. Esposito, A. Piancastelli, Yu. Bykov, et al., Opt. Mater., 35, 761 (2013).

    Article  ADS  Google Scholar 

  30. V. B. Glushkova, V. A. Krzhizhanovskaya, O. N. Egorova, et al., Inorg. Mater., 19, No. 1, 80 (1983).

    Google Scholar 

  31. G. M. B. Parkes, G. Bond, P. A. Barnes, et al., Rev. Sci. Instrum., 71, 168 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Egorov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 8–9, pp. 637–646, August–September 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, S.V., Bykov, Y.V., Eremeev, A.G. et al. Laser Ceramics Sintering by Millimeter-Wave Heating. Radiophys Quantum El 56, 574–581 (2014). https://doi.org/10.1007/s11141-014-9461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9461-5

Keywords

Navigation