Skip to main content
Log in

New Versions of Terahertz Radiation Sources for Dynamic Nuclear Polarization in Nuclear Magnetic Resonance Spectroscopy

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Dynamic nuclear polarization in strong-field nuclear magnetic resonance (NMR) spectroscopy requires terahertz radiation with moderate power levels. Nowadays, conventional gyrotrons are used almost exclusively to generate such radiation. In this review paper, we consider alternative variants of electronic microwave oscillators which require much weaker magnetic fields for their operation, namely, large-orbit gyrotrons operated at high cyclotron-frequency harmonics and Čerenkov-type devices, such as a backward-wave oscillator and a klystron frequency multiplier with tubular electron beams. Additionally, we consider the possibility to use the magnetic field created directly by the solenoid of an NMR spectrometer for operation of both the gyrotron and the backward-wave oscillator. Location of the oscillator in the spectrometer magnet makes it superfluous to use an additional superconducting magnet creating a strong field, significantly reduces the length of the radiation transmission line, and, in the case of Čerenkov-type devices, allows one to increase considerably the output-signal power. According to our calculations, all the electronic devices considered are capable of ensuring the power required for dynamic nuclear polarization (10 W or more) at a frequency of 260 GHz, whereas the gyrotrons, including their versions proposed in this paper, remain a single option at higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Becerra, G. J. Gerfer, R. J. Temkin, et al., Phys. Rev. Lett., 71, 3562 (1993).

    Article  ADS  Google Scholar 

  2. R. G. Griffin and T. F. Prisner, Phys. Chem. Chem. Phys., 12, 5737 (2010).

    Article  Google Scholar 

  3. E. A. Nanni, A. B. Barnes, R. G. Griffin, and R. J. Temkin, IEEE Trans. THz Sci. Technol., 1, 145 (2011).

    Article  Google Scholar 

  4. C. Griesinger, M. Bennati, H. M. Vieth, et al., Progress in NMR Spectrosc., 64, 4 (2012).

    Article  Google Scholar 

  5. V. S. Bajaj, C. T. Farrar, M. K. Hornstein, et al., J. Magn. Resonance, 213, 404 (2011).

    Article  ADS  Google Scholar 

  6. T. Idehara, T. Saito, I. Ogawa, et al., Appl. Magn. Resonance., 34, 265 (2008).

    Article  Google Scholar 

  7. V. Denisenkov, M. J. Prandolini, M. Gafurov M., et al., Phys. Chem. Chem. Phys., 12, 5786 (2010).

    Article  Google Scholar 

  8. V. E. Zapevalov, S. Yu. Kornishin, and A. V. Kotov, Radiophys. Quantum Electron., 53, No. 4, 229 (2010).

    Article  ADS  Google Scholar 

  9. H. Jory, R&D Technical Report ECOM-01873-F, Varian Associates, Palo Alto (1968).

  10. D. B. McDermott, N. C. Luhmann, Jr., A. Kupiszewski, and H. R. Jory, Phys. Fluids, 26, No. 7, 1936 (1983).

    Article  ADS  MATH  Google Scholar 

  11. W. Lawson, W. W. Destler, and C. D. Striffler, IEEE Trans. Plasma Sci., 13, 444 (1985).

    Article  ADS  Google Scholar 

  12. V. L. Bratman, A. E. Fedotov, Yu. K. Kalynov, et al., IEEE Trans. Plasma Sci., 27, No. 2, 456 (1999).

    Article  ADS  Google Scholar 

  13. V. L. Bratman, Yu. K. Kalynov, V. N. Manuilov, and S. V. Samsonov, Radiophys. Quantum Electron., 48, Nos. 10–11, 731 (2005).

    Google Scholar 

  14. V. L. Bratman, Yu. K. Kalynov, and V. N. Manuilov, J. Commun. Technol. Electron., 56, No. 4, 500 (2011).

    Article  Google Scholar 

  15. V. L. Bratman, Yu. K. Kalynov, and V. N. Manuilov, Radiophys. Quantum Electron., 52, No. 7, 472 (2009).

    Article  ADS  Google Scholar 

  16. V. L. Bratman, Y. K. Kalynov, and V. N. Manuilov, Phys. Rev. Lett., 102, No. 24, 245101 (2009).

    Article  ADS  Google Scholar 

  17. V. I. Fedorov, A. S. Pogodin, and Yu. K. Kalynov, Millimetr. Volny Biol. Med, No. 3. (63), 27 (2011).

  18. V. L. Bratman, V. G. Zorin, Y. K. Kalynov, et al., Phys. Plasmas, 18, No. 8, 083507 (2011).

    Article  ADS  Google Scholar 

  19. V. E. Zapevalov, S. A. Malygin, V. G. Pavel’ev, and Sh. E. Tsimring, Radiophys. Quantum Electron., 27, No. 9, 846 (1984).

  20. V. E. Zapevalov, A. N. Kuftin, V. N. Manuilov, et al., in: Proc. 8th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications” (SMP-2011), Nizhny Novgorod–St. Petersburg, Russia, July 9–16, 2011, p. 143.

  21. V. L. Bratman, M. Yu. Glyavin, V. E. Zapevalov, et al., in: IInd Dynamic Nuclear Polarization Symposium: Theory, Hardware, Applications, Radicals, Koenigstein, Germany, Sept. 2–4, 2009, p.5.

  22. V. L. Bratman, A. E. Fedotov, Yu. K. Kalynov, in: 8th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications” (SMP-2011), Nizhny Novgorod–St. Petersburg, Russia, July 9-16, 2011, p. 9.

  23. J. R. Sirigiri and T. Maly, “Integrated high-frequency generator system utilizing the magnetic field of the target application”, Patent Application No. US 2012/0176133 A1, July 12, 2012.

  24. L. A. Surin, B. S. Dumesh, F. Lewen, et al., Rev. Sci. Instrum., 72, No. 6, 2535 (2001).

    Article  ADS  Google Scholar 

  25. D. Chernin, A. Burke, I. Chernyavskiy, et al., in: Proc. 11th Int. Vacuum Electronics Conf., Monterey, California, May 18–20, 2010, p. 217.

  26. A. Roitman, P. Horoyski, B. Steer, and D. Berry, in: Proc. 14th IEEE Int. Vacuum Electronics Conf., May 21–23, 2013, Paris, France, http://www.cpii.com/product.cfm/7/40/158.

  27. S. S. Ponomarenko, S. A. Kishko, V. V. Zavertanniy, et al., IEEE Trans. Plasma Sci., 41, No. 1, 82 (2013).

    Article  ADS  Google Scholar 

  28. V. P. Shestopalov, ed. , Generators of Diffraction Radiation [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  29. V. L. Bratman, B. S. Dumesh, A. E. Fedotov, et al., IEEE Trans. Plasma Sci., 38, 1466 (2010).

    Article  ADS  Google Scholar 

  30. V. L. Bratman, V. A. Gintsburg, Yu. A. Grishin, et al., Radiophys. Quantum Electron., 49, No. 11, 866 (2006).

    Article  ADS  Google Scholar 

  31. V. L. Bratman, A. E. Fedotov, and P. B. Makhalov, Phys. Plasmas, 19, No. 2, 020704 (2012).

    Article  ADS  Google Scholar 

  32. E. A. Nanni, S. M. Lewis, M. A. Shapiro, and R. J. Temkin, in: Proc. 14th IEEE Int. Vocuum Electronics Conf., May 21–23, 2013, Paris, France, doi: 10.1109/IVEC.2013.657 1109

  33. I. V. Bandurkin, V. L.Bratman, Y. K. Kalynov, et al., in: Proc. 33rd IEEE Int. Conf. Infrared, Millimeter and Terahertz Waves (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Bratman.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 8–9, pp. 589–600, August–September 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratman, V.L., Kalynov, Y.K., Makhalov, P.B. et al. New Versions of Terahertz Radiation Sources for Dynamic Nuclear Polarization in Nuclear Magnetic Resonance Spectroscopy. Radiophys Quantum El 56, 532–541 (2014). https://doi.org/10.1007/s11141-014-9456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9456-2

Keywords

Navigation