Advertisement

Radiophysics and Quantum Electronics

, Volume 56, Issue 8–9, pp 508–531 | Cite as

Quasioptical Theory of Relativistic Čerenkov Generators and Amplifiers

  • N. S. Ginzburg
  • A. M. Malkin
  • V. Yu. Zaslavskiy
  • I. V. Zheleznov
  • A. S. Sergeev
  • I. V. Zotova
Article
  • 63 Downloads

We study propagation of electromagnetic waves above periodically corrugated surfaces and excitation of such waves by rectilinear relativistic electron flows within the framework of the quasioptical approach. Near a periodic structure, the electromagnetic field can be expanded into a sum of spatial harmonics, which in the case of a low corrugation depth are paraxial wave beams whose relationship is described within the framework of the method of equivalent surface magnetic currents. Under these assumptions, we obtain a dispersion relation for normal waves, and two extreme cases are singled out on its basis. In the first case, the radiation frequency is far from the Bragg resonance frequency, and wave propagation can be described within the framework of the impedance approximation, where the field is represented in the form of a fundamental slow wave and its spatial harmonics. In the case of interaction with the electron flow, this case corresponds to a convective instability, where the particles are synchronous with the fundamental (zeroth) or higher spatial harmonics (the traveling-wave tube regime), and an absolute instability, where the particles are synchronous with the spatial harmonic of the backward waves (the backward-wave oscillator regime). In the second extreme case, which is realized at frequencies close to the Bragg resonance, the field is represented as two counter-propagating quasioptical wave beams. This determines the absolute character of the instability, which is used in generators of the surface wave at the π-type modes. Basing on the developed theory, we determined the main characteristics of the amplifier and generator schemes including growth rates, energy exchange efficiency, and the formation of a spatial self-consistent structure of the radiated field. Good prospects for application of relativistic amplifiers and generators of surface waves in the submillimeter-wave band is demonstrated.

Keywords

Wave Beam Relativistic Electron Beam Corrugate Surface Spatial Harmonic Bragg Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. F. Kovalev, M. I. Petelin, M. D. Raizer, et al., JETP Lett., 18, p. 138.Google Scholar
  2. 2.
    V. I. Belousov, B. V. Bunkin, and A. V. Gaponov-Grekhov, Pis’ma Zh. Tekh. Fiz., 4, No. 23, 1443 (1978).Google Scholar
  3. 3.
    N. I. Zaitsev, N. F. Kovalev, B. D. Kol’chugin, and M. I. Fuchs, Zh. Tekh. Fiz., 52, No. 8, p. 1611 (1982).Google Scholar
  4. 4.
    S. D. Korovin, V. V. Rostov, and E. M. Tot’meninov, Tech. Phys. Lett., 31, No. 5, p. 411 (2005).Google Scholar
  5. 5.
    V. L. Bratman, V. P. Gubanov, G. G. Denisov, et al., Pis’ma Zh. Tekh. Fiz., 10, 807 (1984).Google Scholar
  6. 6.
    S. P. Bugaev, V. I. Kanavets, V. I. Koshelev, and V. A. Cherepenin, Relativistic Multimode Microwave Generators [in Russian], Nauka, Novosibirsk, 1991.Google Scholar
  7. 7.
    V. A. Cherepenin, Phys. Usp., 176, 1124 (2006).CrossRefGoogle Scholar
  8. 8.
    A. N. Vlasov, A. G. Shkvarunets, J. S. Rodgers, et al., IEEE Trans. Plasma Sci., 28, 235 (2000).Google Scholar
  9. 9.
    V. L. Bratman, G. G. Denisov, S. D. Korovin, et al., IEEE Trans. Plasma Sci., 15, 2 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    A. B. Volkov, N. I. Zaitsev, E. V. Ilyakov, et al., Pis’ma Zh. Tekh. Fiz., 18, 6 (1992).Google Scholar
  11. 11.
    E. B. Abubakirov, A. N. Denisenko, M. I. Fuchs, et al., IEEE Trans. Plasma Sci., 30, 1041 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    S. D. Korovin, A. A. Eltchaninov, V. V. Rostov, et al., Phys. Rev. E, 2006. V. 74, 016501 (2006).Google Scholar
  13. 13.
    N. F. Kovalev, M. I.Petelin, M. D. Raizer, et al., in: A.V.Gaponov-Grekhov, ed., Relativistic High-Frequency Elecronics [in Russian], Inst. Appl. Phys. RAS, Gorky (1979).Google Scholar
  14. 14.
    V. L. Bratman, V. P. Gubanov, G. G. Denisov, et al., in: A.V.Gaponov-Grekhov, ed., Relativistic High-Frequency Electronics, 4, Inst. Appl. Phys. USSR Acad. Sci. (1984).Google Scholar
  15. 15.
    N. F. Kovalev, V. I. Petrukhina, and A. V. Smorgonsky, Radiotekh. Élektron., 20, No. 6, 1305 (1975).ADSGoogle Scholar
  16. 16.
    N. F. Kovalev and A. V. Smorgonsky, Radiotekh. Élektron., 20, No. 7, 1547 (1975).ADSGoogle Scholar
  17. 17.
    N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Radiophys. Quantum Electron., 21, No. 7, 728 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    L. A. Vainshtein and V. A. Solntsev, Lectures on Microwave Electronics [in Russian], Sov. Radio, Moscow (1973).Google Scholar
  19. 19.
    D. I. Trubetskov and A. E. Khramov, Lectures on Microwave Electronics for Physicists [in Russian], Fizmatlit, Moscow (2003).Google Scholar
  20. 20.
    N. S. Ginzburg, N. A. Zavolsky, V. E. Zapevalov, et al., Tech. Phys., 45, 480 (2000).CrossRefGoogle Scholar
  21. 21.
    A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794 (1967).Google Scholar
  22. 22.
    Y. M. Shin, J. K. So, K. H. Jang, et al., Phys. Rev. Lett., 99, 147402 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    V. L. Bratman, A. E. Fedotov, and P. B. Makhalov, Appl. Phys. Lett. 2011. V. 98. 061503.Google Scholar
  24. 24.
    H. L. Andrews and C. A. Brau, Phys. Rev. Spec. Top. Accel. Beams, 7, 070701 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    C. Prokop, P. Piot, M. C. Lin, et al., Appl. Phys. Lett., 96, 1515 (2010).CrossRefGoogle Scholar
  26. 26.
    B. Z. Katsenelenbaum, Theory of Nonregular Waveguides with Slowly Varying Paraemters [in Russian], Moscow (1961).Google Scholar
  27. 27.
    N. F. Kovalev, I. M.Orlova, and M. I.Petelin, Radiophys. Quantum Electron., 11, 449 (1968).ADSCrossRefGoogle Scholar
  28. 28.
    N. F. Kovalev, Elektron. Tekhn. Ser. Electron. SVCh, No. 3, 102 (1978).Google Scholar
  29. 29.
    N. S. Ginzburg, V. Yu. Zaslavskii, A. M. Malkin, and A. S. Sergeev, Tech. Phys. Lett., 37, No. 7, 605 (2011).CrossRefGoogle Scholar
  30. 30.
    N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, et al., Appl. Phys. Lett., 99, 121505 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    N. S. Ginzburg, V. Yu. Zaslavsky, A. M. Malkin, and A. S. Sergeev, Tech. Phys., 57, No. 12, 692 (2012).CrossRefGoogle Scholar
  32. 32.
    N. S. Ginzburg, A. M. Malkin, I. V. Zheleznov, et al., Tech. Phys. Lett., 39, No. 1, 123 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    L. A. Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).Google Scholar
  34. 34.
    V. L. Bratman, G. G. Denisov, N. S. Ginzburg, and M. I. Petelin, IEEE J. Quant. Electr., 19, No. 3, 282 (1983).ADSCrossRefGoogle Scholar
  35. 35.
    N. S. Ginzburg, V. Yu. Zaslavsky, A. M. Malkin, and A. S. Sergeev, J. Commun. Tech. Electron., 56, No. 4, 433 (2011).CrossRefGoogle Scholar
  36. 36.
    N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, and V. Yu. Zaslavsky, Appl. Phys. Lett., 100, 143510 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    N. S. Ginzburg, V. Yu. Zaslavsky, A. M. Malkin, and A. S. Sergeev, Tech. Phys. Lett., 38, No. 2, 188 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    N. S. Ginzburg, N. Yu.Peskov, and A. S. Sergeev, Radiophys. Quantum Electron., 44, Nos. 5–6, 494 (2001).Google Scholar
  39. 39.
    N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, and V. Yu. Zaslavsky, J. Appl. Phys., 113, 104504 (2013).ADSCrossRefGoogle Scholar
  40. 40.
    N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, et al., Phys. Rev. Lett., 110, 184811 (2013).ADSCrossRefGoogle Scholar
  41. 41.
    N. S. Ginzburg, A. M. Malkin, I. V. Zheleznov, et al., Tech. Phys. Lett., 39, No. 1, 123 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. S. Ginzburg
    • 1
  • A. M. Malkin
    • 1
  • V. Yu. Zaslavskiy
    • 1
  • I. V. Zheleznov
    • 1
  • A. S. Sergeev
    • 1
  • I. V. Zotova
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations