Skip to main content
Log in

Two-Channel Generator of the 8-mm Wavelength Range for Radiation with Subgigawatt Power Level Pulses

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We review the studies of phase stabilization of a pulsed relativistic backward-wave oscillator (BWO) excited by the feed voltage with a steep front. Results of radiation phase stabilization are compared with the results of in-phase excitation of two independent nanosecond relativistic microwave backward-wave oscillators of the 8-mm wavelength range. Stable and controlled (by correcting the voltage front) synchronization of two channels with identical high-current electron beams is demonstrated for the case of generation power of up to 230 MW and a pulse duration of up to 100 oscillation periods in each beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yu. Vvedensky, A. V. Andriyanov, and É. A. Ermilov, Pribory i Tekh. Éksp., No. 1, 114 (1975).

  2. V. Yu. Vvedensky, V. S. Syuvatkin, and A. A. Khrustalyov, Radiotekh. Élektron., No. 10, 2063 (1985).

  3. V. P. Gubanov, A. I. Klimov, O. B. Koval’chuk, et al., Instrum. Exp. Tech., No. 5, 710 (2010).

  4. Yu. V. Konev, V. P. Gubanov, A. I. Klimov, et al., Instrum. Exp. Tech., No. 6, 721 (2011).

  5. K. V. Afanasyev, N. M. Bykov, V. P. Gubanov, et al., Tech. Phys. Lett., 32, No. 11, 925 (2006).

    Article  ADS  Google Scholar 

  6. M. I. Yalandin, V. G. Shpak, S. A. Shunailov, et al., Tech. Phys. Lett., 25, No. 12, 927 (1999).

    Article  ADS  Google Scholar 

  7. S. D. Korovin, G. A. Mesyats, V. V. Rostov, et al., Tech. Phys. Lett., 30, No. 2, 117 (2004).

    Article  ADS  Google Scholar 

  8. A. I. Klimov, S. D. Korovin, V. V. Rostov, et al., IEEE Trans. Plasma Sci., 30, No. 3, 1120 (2002).

    Article  ADS  Google Scholar 

  9. A. A. El’chaninov, S. D. Korovin, G. A. Mesyats, et al., IEEE Trans. Plasma Sci., 32, No. 3, 1093 (2004).

  10. S. D. Korovin, V. V. Rostov, S. D. Polevin, et al., Proc. IEEE, 92, No. 7, 1082 (2004).

    Article  Google Scholar 

  11. N. S. Ginzburg, S. D. Korovin, I. V. Pegel, et al., Laser Phys., 16, No. 1, 79 (2006).

    Article  ADS  Google Scholar 

  12. S. D. Korovin, S. K. Lyubutin, G. A. Mesyats, et al., Tech. Phys. Lett., 30, No. 9, 719 (2004).

    Article  ADS  Google Scholar 

  13. D. M. Grishin, S. K. Lyubutin, G. A. Mesyats, et al., Tech. Phys. Lett., 34, No. 10, 822 (2008).

    Article  ADS  Google Scholar 

  14. V. V. Rostov, M. I. Yalandin, and G. A. Mesyats, IEEE Trans. Plasma Sci., 36, No. 3, 655 (2008).

    Article  ADS  Google Scholar 

  15. A. A. El’chaninov, A. I. Klimov, O. B. Koval’chuk, et al., Tech. Phys., 56, No. 1, 121 (2011).

  16. V. V. Rostov, A. A. El’chaninov, I. V. Romanchenko, and M. I. Yalandin, Appl. Phys. Lett., 100, 224102 (2012).

    Google Scholar 

  17. M. I. Yalandin, S. A. Shunailov, M. R. Ul’maskulov, et al., Tech. Phys. Lett., 38, No. 10, 917 (2012).

    Article  ADS  Google Scholar 

  18. G. A. Mesyats and M. I. Yalandin, Phys. Usp., 48, No. 3, 211 (2005).

    Article  ADS  Google Scholar 

  19. S. D. Korovin, E. A. Litvinov, G. A. Mesyats, et al. Tech. Phys. Lett., 30, No. 10, 813 (2004).

  20. M. I. Yalandin, A. G. Reutova, M. R. Ul’maskulov, et al., Tech. Phys. Lett., 35, No. 9, 804 (2009).

    Article  ADS  Google Scholar 

  21. M. I. Yalandin, A.G. Reutova, K. A. Sharypov, et al., IEEE Trans. Plasma Sci., 38, No. 10, 2559 (2010).

    Article  Google Scholar 

  22. S. N. Rukin, Instrum. Exp. Tech., 42, No. 4, 439 (1999).

    Google Scholar 

  23. V. V. Rostov, A. A. El’chaninov, I. V. Romanchenko, et al., Proc. 18 Int. IEEE Conf. Pulsed Power Plasma Sci., Chicago, 2011, p. 647.

  24. A. V. Gaponov, L. A. Ostrovsky, and G. I. Freidman, Radiophys. Quantum Electron., 10, Nos. 9–10, 772 (1967).

  25. I. V. Romanchenko and V. V. Rostov, Tech. Phys., 55, No. 7, 1024 (2010).

    Article  Google Scholar 

  26. V. V. Rostov, E. M. Tot’meninov, and M. I..Yalandin, Tech. Phys., 53, No. 11, 1471 (2008).

  27. A. V. Gunin, V. F. Landl’, S. D. Korovin, et al., Tech. Phys. Lett., 25, No. 11, 922 (1999).

  28. I. K. Kurkan, V. V. Rostov, and E. M. Tot’meninov, Tech. Phys. Lett., 24, No. 5, 388 (1998).

    Article  ADS  Google Scholar 

  29. S. D. Korovin, I. K. Kurkan, V. V. Rostov, et al., Radiophys. Quantum Electron., 42, No. 12, 1047 (1999).

    Article  ADS  Google Scholar 

  30. A. I. Savvatimsky, Phys. Usp., 46, 1295 (2003).

    Article  ADS  Google Scholar 

  31. S. P. Bugaev, E. A. Litvinov, G. A. Mesyats, et al., Sov. Phys. Usp., 18, No. 1, 54 (1975).

    Article  ADS  Google Scholar 

  32. E. A. Litvinov, G. A. Mesyats, and D. I. Proskurovsky, Sov. Phys. Usp., 26, No. 2, 138 (1983).

    Article  ADS  Google Scholar 

  33. S. Ya. Belomytsev, G. A. Mesyats, and S. D. Korovin, Pis’ma Zh. Tekh. Fiz., 6, No. 18, 1089 (1980).

  34. S. D. Korovin, S. K. Lyubutin, E. A. Litvinov, et al., Tech. Phys. Lett., 31, No. 6, 488 (2005).

    Article  ADS  Google Scholar 

  35. A. V. Batrakov, I. V. Pegel, and D. I.Proskurovsky, Tech. Phys. Lett., 25, No. 6, 454 (1999).

    Article  ADS  Google Scholar 

  36. V. G. Pavlov, Tech. Phys., 49, No. 12, 1610 (2004).

    Article  Google Scholar 

  37. G. N. Fursey, V. I. Petrick, and D. V. Novikov, Tech. Phys., 54, No. 7, 1048 (2009).

    Article  Google Scholar 

  38. G. N. Fursei, M. A. Polyakov, A. A. Kantonistov, et al., Tech. Phys., 58, No. 6, 845 (2013).

    Article  Google Scholar 

  39. G. A. Mesyats, I. V. Uimanov, IEEE Trans. Dielectrics Electr. Insol., 13, No. 1, 105 (2006).

    Article  Google Scholar 

  40. V. I. Oreshkin, S. A. Barengol’ts, and S. A. Chaikovsky, Tech. Phys., 52, No. 5, 642 (2007).

  41. S. D. Korovin, E. A. Litvinov, G. A. Mesyats, et al., IEEE Trans. Plasma Sci., 34, No. 5, 1771 (2006).

    Article  ADS  Google Scholar 

  42. A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 134 (1977).

  43. S. Ya. Belomytsev, E. A. Litvinov, G. A. Mesyats, and A. I. Fedosov, Fiz. Plazmy, 7, No. 1, 86 (1981).

  44. V. E. Nechaev, Radiophys. Quantum Electron., 34, No. 9, 808 (1991).

    Article  ADS  Google Scholar 

  45. G. A. Mesyats and D. I. Proskurovsky, Pulsed Electric Discharges in Vacuum [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  46. S. Ya. Belomytsev, I. V. Romanchenko, and V. V. Rostov, Radiophys. Quantum Electron., 51, No. 3, 71 (2008).

  47. S. Ya. Belomytsev, S. D. Korovin, and I. V. Pegel’, Tech. Phys., 44, No. 6, 695 (1999).

  48. N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Radiophys. Quantum Electron., 21, No. 7, 728 (1978).

    Article  ADS  Google Scholar 

  49. V. P. Gubanov, S. D. Korovin, I. V. Pegel, et al., Proc. Int. Conf. Intense Microwave Pulses IV, Denver, USA, 2843, 228 (1996).

  50. E. B. Abubakirov, A. R. Konyushkov, and A. S. Sergeev, J. Commun. Tech. Electron., 54, No. 8, 959 (2009).

    Article  Google Scholar 

  51. S. D. Korovin, G. A. Mesyats, V. V. Rostov, et al., Pis’ma Zh. Tekh. Fiz., 11, No. 17, 1072 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rostov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 8–9, pp. 525–543, August–September 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostov, V.V., Elchaninov, A.A., Romanchenko, I.V. et al. Two-Channel Generator of the 8-mm Wavelength Range for Radiation with Subgigawatt Power Level Pulses. Radiophys Quantum El 56, 475–491 (2014). https://doi.org/10.1007/s11141-014-9452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9452-6

Keywords

Navigation