Advertisement

Radiophysics and Quantum Electronics

, Volume 55, Issue 9, pp 556–563 | Cite as

Wave beams in smoothly inhomogeneous anisotropic media: nonaberrational approximation (Part III)

  • A. A. Balakin
Article

In this series of papers, we propose a method for development of an approximate solution of the Maxwell equations in smoothly inhomogeneous anisotropic gyrotropic media with allowance for aberrations, spatial dispersion, and absorption. Evolution equations for wave beams are obtained, and a method for their numerical solution is developed. The relation of the quasi-optical evolution equation to the aberration-free equation for wave beams is shown, and a general solution to the latter equation is found. The applicability conditions for the aberration-free equation have been written explicitly. Methods of allowance for dissipative aberration effects within the framework of the nonaberrational approximation are described.

Keywords

Gaussian Beam Wave Beam Applicability Condition Dissipative Medium Electron Cyclotron Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Zohm, in: Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating, 2005, p. 133.Google Scholar
  2. 2.
    K.Takahashi, N.Kobayashi, A.Kasugai, and K. Sakamoto, J. Phys. Conf. Ser., 25, 75 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    K.Takahashi, N.Kobayashi, J.Ohmori, et al., Fusion Sci. Technol., 52, 266 (2007).Google Scholar
  4. 4.
    E. Mazzucato, Phys. Fluids B, 1, 1855 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    D. Farina, Fusion Sci. Technol., 52, 154 (2007).Google Scholar
  6. 6.
    G.V. Pereverzev, Rev. Plasma Phys., 19, 1 (1996).Google Scholar
  7. 7.
    G.V. Pereverzev, Phys. Plasmas, 5, 3529 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    R.Prater, D. Farina, Yu.Gribov, et al., Nucl. Fusion, 48, 035006 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    O.Maj, A. A. Balakin, and E.Poli, Plasma Phys. Control. Fusion, 52, 085006 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Balakin, Radiophys. Quantum Electron., 55, No. 7, 472 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Balakin, M. A. Balakina, G.V. Permitin, and A. I. Smirnov, Radiophys. Quantum Electron., 50, No. 12, 955 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Balakin, M. A. Balakina, and E.Westerhof, Nucl. Fusion, 48, 065003 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Balakin, Radiophys. Quantum Electron., 55, No. 8, 502 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    A. V.Timofeev, Physics—Uspekhi, 483, No. 6, 609 (2005).ADSGoogle Scholar
  15. 15.
    E.Westerhof, M. D.Tokman, and M. A. Gavrilova, Plasma Phys. Contr. Fusion, 42, 91 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    E.Westerhof, M. D.Tokman, and M. A. Gavrilova, Fusion Eng. Des., 53, 47 (2001).CrossRefGoogle Scholar
  17. 17.
    G. V. Permitin and A. I. Smirnov, JETP, 82, No. 3, 395 (1996).ADSGoogle Scholar
  18. 18.
    G. V. Permitin and A. I. Smirnov, JETP, 92, No. 1, 110 (2001).CrossRefGoogle Scholar
  19. 19.
    A. A. Balakin, M. A. Balakina, G.V. Permitin, and A. I. Smirnov, and, Plasma Phys. Rep. , 34, No. 6, 486 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations