Advertisement

Radiophysics and Quantum Electronics

, Volume 55, Issue 8, pp 502–510 | Cite as

Wave beams in smoothly inhomogeneous anisotropic media: a quasioptical equation (Part II)

  • A. A. Balakin
Article

In this series of papers, we propose a method for constructing an approximate solution of the Maxwell equations in smoothly inhomogeneous anisotropic gyrotropic media with allowance for aberrations, spatial dispersion, and absorption. Evolution equations for wave beams are obtained and a method for their numerical solution is developed. Their relation to equations of the nonaberrational approximation is shown. In this second part, we derive a quasioptical evolution equation for wave beams and propose a method for its numerical solution. The connection with the aberration-free approximation equations is shown.

Keywords

Gaussian Beam Inhomogeneous Medium Spatial Dispersion Reference Curve Wave Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Zohm, in: Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating, 2005, p. 133.Google Scholar
  2. 2.
    K.Takahashi, N.Kobayashi, A.Kasugai, and K. Sakamoto, J. Phys. Conf. Ser., 25, 75 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    K.Takahashi, N.Kobayashi, J.Ohmori, et al., Fusion Sci. Technol., 52, 266 (2007).Google Scholar
  4. 4.
    E. Mazzucato, Phys. Fluids B, 1, 1855 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    D. Farina, Fusion Sci. Technol., 52, 154 (2007).Google Scholar
  6. 6.
    G.V. Pereverzev, Rev. Plasma Phys., 19, 1 (1996).Google Scholar
  7. 7.
    G.V. Pereverzev, Phys. Plasmas, 5, 3529 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    R.Prater, D. Farina, Yu.Gribov, et al., Nucl. Fusion, 48, 035006 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    O.Maj, A. A. Balakin, and E.Poli, Plasma Phys. Control. Fusion, 52, 085006 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Balakin, Radiophys. Quantum Electron., 55, No. 7, 472 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. V.Timofeev, Physics –Uspekhi, 48, No. 6, 609 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Leontovich and V.A. Fock, Zh. Éksp. Teor. Fiz., 16, 557 (1946).MathSciNetMATHGoogle Scholar
  13. 13.
    N. G. Bondarenko and V. I. Talanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 7, 313 (1964).Google Scholar
  14. 14.
    A. G. Litvak and V. I.Talanov, Radiophys. Quantum Electron., 10, No. 4, 296 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    V. I.Talanov and S. N. Vlasov, Self-Focusing of Waves [in Russian], Inst. Appl. Phys., Nizhny Novgorod (1997).Google Scholar
  16. 16.
    A. N. Saveliev, Plasma Phys. Control. Fusion, 51, 075004 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    V. I.Talanov, JETP Lett., 11, No. 6, 199 (1970).ADSGoogle Scholar
  18. 18.
    G. V. Permitin and A. I. Smirnov, JETP, 92, No. 1, 10 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Balakin, M. A. Balakina, G.V. Permitin, and A. I. Smirnov, Radiophys. Quantum Electron., 50, No. 12, 955 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    Yu.A. Kravtsov and Yu. I.Orlov, Geometric Optics of Inhomogeneous Media, Springer-Verlag, Berlin (1990).Google Scholar
  21. 21.
    A. A. Balakin, M. A. Balakina, and E.Westerhof, Nucl. Fusion, 48, 065003 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    A. A. Balakin, M. A. Balakina, G.V.Permitin, and A. I. Smirnov, Plasma Phys. Rep., 33, No. 4, 302 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    G.M. Fraiman, E.M. Sher, A.D.Yunakovsky, and W. Laedke, Physica D, 87, 325 (1995).ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Applied PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations