Radiophysics and Quantum Electronics

, Volume 54, Issue 8–9, pp 609–615 | Cite as

Studying the frequency tuning of pulsed terahertz quantum cascade lasers

  • A. A. Lastovkin
  • A. V. Ikonnikov
  • V. I. Gavrilenko
  • A. V. Antonov
  • Yu. G. Sadof’ev

Radiation spectra of pulsed quantum cascade lasers operated at about 2.6 and 3.2 THz have been studied using the Fourier-transform technique. Tuning of the laser radiation frequency by 5.4 GHz in a temperature variation range of 8 to 86 K for the 2.6 THz laser and by 2.7 GHz in a range of 10 to 60 K for the 3.2 THz laser, resulting mainly from the temperature dependence of the effective refractive index of the active region, has been demonstrated. Frequency tuning by 420 MHz during the radiation pulse was shown for the first time in a laser with the active region designed on the basis of fast removal of the carriers from the lower operating level due to the phonon scattering.


GaAs Current Pulse Radiation Spectrum Pulse Repetition Rate Frequency Tuning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, Phys. Med. Biol ., 46, R101 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    L. Betz and R. T. Boreiko, Opt. Lett ., 30, No. 14, 1837 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    D. Rabanus, U. U. Graf, M. Philipp, et al., Opt. Express, 17, 1159 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    J. M. Hensley, J. Montoya, M. G. Allen, et al., Opt. Express, 17, 20476 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    S. Kumar, B. S. Williams, S. Kohen, et al., Appl. Phys. Lett ., 84, 2494 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Ikonnikov, A. V. Antonov, A. A. Lastovkin, et al., Fiz. Tekh. Poluprovodn., 44, 1514 (2010).Google Scholar
  7. 7.
    A. Tredicucci, Conf. Lasers Electro-Opt. Opt. Soc. Am., (2007), paper FH2-1.Google Scholar
  8. 8.
    H. Richter, S. G. Pavlov, A. D. Semenov, et al., Appl. Phys. Lett ., 96, art. No. 071112 (2010).Google Scholar
  9. 9.
    J. S. Blakemore, Appl. Phys., 53, No. 10, R123 (1982).ADSGoogle Scholar
  10. 10.
    T. C. Cetas, C. A. Swenson, and C. R. Tilfor, Phys. Rev. Ser. 2, 174, 835 (1968).ADSGoogle Scholar
  11. 11.
    R. O. Carlson, G. A. Slack, and S. J. Silverman, J. Appl. Phys., 36, 505 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Express, 13, 3331 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • A. A. Lastovkin
    • 1
  • A. V. Ikonnikov
    • 1
  • V. I. Gavrilenko
    • 1
  • A. V. Antonov
    • 1
  • Yu. G. Sadof’ev
    • 2
  1. 1.Institute for Physics of MicrostructuresNizhny NovgorodRussia
  2. 2.State Radiotechnical University of Ryazan’,Ryazan’Russia

Personalised recommendations