Radiophysics and Quantum Electronics

, Volume 54, Issue 6, pp 390–401 | Cite as

The method of multifrequency near-field acoustical tomography of bulk inhomogeneities of the sea bottom

  • P. K. Gaikovich
  • A. I. Khil’ko
  • K. P. Gaikovich

In this work, we propose a method of near-field acoustical multi-frequency coherent tomography of spatially localized inhomogeneities of the shallow-sea bottom. In the framework of the developed method, two-dimensional spatial scanning of the radiating-receiving system along the bottom over the region of location of the inhomogeneities is performed at multiple frequencies. Using the Born approximation, the initial three-dimensional integral equation for the scattered field is reduced to one-dimensional Fredholm equation of the first kind with respect to the depth profile of the transverse spatial spectrum of the inhomogeneities. In the solution of this integral equation for each pair of spectral components, we use the method of generalized residual and obtain the sought three-dimensinal distribution via the inverse Fourier transform of the reconstructed spectrum. Results of numerical simulation of the tomography scheme and visualized inhomogeneities of shallow-sea bottom are presented.


Sound Velocity Born Approximation Horizontal Cross Section Reconstructed Spectrum Tomographic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Goncharov, V. Yu. Zaitsev, V. M. Kurtepov, et al., Ocean Acoustic Tomography [in Russian], Inst. Appl. Phys., Nizhny Novgorod (1997).Google Scholar
  2. 2.
    A. I. Khil’ko, Physical Principles of Sounding Spatially-Localized Inhomogeneities in Layered Waveguieds Using Partially Coherent Fields [in Russian] Dr. Sc. Thesis (Phys. and Math.), Nizhny Novgorod (2006).Google Scholar
  3. 3.
    A. N. Telegin, ed., Marine Seismo-Prospecting [in Russian], Geoinformmark, Moscow (2004).Google Scholar
  4. 4.
    A. V. Nikolaev, Sounding of the Earth by Non-explosive Seismic Sources [in Russian], Nauka, Moscow (1981).Google Scholar
  5. 5.
    V. S. Averbakh, B. N. Bogolyubov, Yu.M. Zaslavsky, et al., Acoust. Phys., 45, No. 1, 1 (1999).ADSGoogle Scholar
  6. 6.
    A. V. Lebedev and A. I. Malekhanov, Radiophys. Quantum Electron., 46, No. 7, 523 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    V. S. Averbakh, V. V. Artel’ny, B. N. Bogolyubov, et al., in: Fundamental Studies of Oceans and Seas, Vol. 2 [in Russian], Nauka, Moscow (2006), p. 491.Google Scholar
  8. 8.
    V. A. Lazarev, A. I. Malekhanov, L. R. Merklin et al., in: Physical, Geological, and Biological Studies of Oceans and Seas [in Russian], Nauchnyi Mir, Moscow (2010), p. 300.Google Scholar
  9. 9.
    A. G. Luchinin and A. I. Khilko, Acoust. Phys., 51, No. 2, 182 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    A. I. Khilko, A. G. Luchinin, V. G. Burdukovskaya, and I. P. Smirnov, Acoust. Phys., 53, No. 3, 381 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A. N. Tikhonov, V. Ya. Arsenin, and A. A. Timonov, Mathematical Problems of Computer Tomography [in Russian], Nauka, Moscow (1987).Google Scholar
  12. 12.
    I. M. Gel’fand and B. M. Levitan, Izvestia AN SSSR, Ser. Matematika, 15, No. 4, 309 (1951).MathSciNetGoogle Scholar
  13. 13.
    V. A. Marchenko, Doklady AN SSSR, 104, No. 5, 695 (1955).MATHGoogle Scholar
  14. 14.
    L. D. Faddeev, Uspekhi Matem. Nauk, 14, No. 4, 57 (1959).MathSciNetMATHGoogle Scholar
  15. 15.
    R. Newton, Inverse Schrödinger scattering in Three Dimensions, Springer-Verlag, New York (1989).MATHGoogle Scholar
  16. 16.
    K. P. Gaikovich, Phys. Rev. Lett., 98, No. 8, 183902 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    P. K. Gaikovich and A. I. Khil’ko, Proc. 11th Sci. Conf. on Radiophysics [in Russian], TALAM, Nizhny Novgorod (2007), p. 185.Google Scholar
  18. 18.
    L. M. Brekhovskikh, Waves in Layered Media, Academic Press, New York (1960).Google Scholar
  19. 19.
    P. K. Gaikovich, Proc. 4th Int. Conf. “Ultrawideband and Ultrashort Impulse Signals” (15–19 September, 2008, Sevastopol, Ukraine), IEEE, Sevastopol (2008), p. 189.CrossRefGoogle Scholar
  20. 20.
    K. P. Gaikovich and P. K. Gaikovich, Proc. 10th Anniversary Int. Conf. Trans. Opt. Networks (ICTON 2008, Athens, Greece, June 22–26, 2008), IEEE, Athens (2008), p. 246.Google Scholar
  21. 21.
    K. P. Gaikovich and P. K. Gaikovich, Inverse Problems, 26, No. 12, 125013 (2010).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    P. K. Gaikovich and A. I. Khil’ko, Proc. 14th Sci. Conf. on Radiophysics [in Russian], TALAM, Nizhny Novgorod (2010), p. 253.Google Scholar
  23. 23.
    A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Regularization Algorithms and A Priori Information [in Russian] Nauka, Moscow (1983).Google Scholar
  24. 24.
    K. P. Gaikovich, P. K. Gaikovich, Ye. S. Maksimovitch, and V. A. Badeev, Proc. 5th Int. Conf. Ultrawideband and Ultrashort Impulse Signals (6–10 September, 2010, Sevastopol, Ukraine), IEEE, Sevastopol (2010), p. 156.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • P. K. Gaikovich
    • 1
  • A. I. Khil’ko
    • 2
  • K. P. Gaikovich
    • 1
  1. 1.Institute of Physics of Microstructures of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations