Response of an atom interacting with an arbitrarily polarized electromagnetic field

  • A. V. Andreev
  • S. Yu. Stremoukhov
  • O. A. Shutova

We develop the theory of interaction of the electromagnetic field and a single atom being in an arbitrary state and having an arbitrary direction of the angular momentum of the atomic electron with respect to the direction of the field polarization vector. It is shown that the atom response current has a tensor structure and depends on both the direction of the angular momentum of the atom, and the polarization vector of the external field. The tensor character of the response is determined by the externally induced anisotropic distribution of the probability density of spatial localization of the atomic electron. It is shown that the induced-anisotropy effects clarify the harmonic generation mechanism at play during the non-resonance interaction of laser radiation with atomic media. The developed theory is applied to the analysis of the problem about the generation of terahertz waves in a two-color laser field. It is shown that the change in the mutual orientation of wave polarization vectors leads to a significant increase in the efficiency of conversion of high-frequency fields to low-frequency ones. It is shown for the first time that the generation of terahertz waves is possible in the preionization regime, when the generation mechanism is related to atomic nonlinearity.


Matrix Element Angular Momentum Response Spectrum Terahertz Radiation Terahertz Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. B. Delone and V. P. Krainov, Nonlinear Ionization of Atoms by Laser Radiation [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  2. 2.
    P. B. Corkum and F. Krausz, Nature Physics, 3, 381 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    V. S. Popov, Phys. Usp., 47, 855 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    R. A. Ganeev, Phys. Usp., 52, 55 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    N. Kaprowitz, X. Lu, and X.-C. Zhang, J. Mod. Opt., 56, 1137 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    B. Shan, S. Ghimire, and Z. Chang, J. Mod. Opt., , 52, 277 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    G. H. C. New and J. F. Ward, Phys. Rev. Lett., 19, No. 10, 556 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    A. McPerson, G. Gibson, H. Jara, et al., J. Opt. Soc. Am. B, 4, No. 4, 595 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    P. Antoine, A. L. Huillier, M. Lewenstein, et al., Phys. Rev. A, 53, 1725 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, Opt. Lett., 19, 1870 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    M. Kovacev, Y. Mairesse, E. Priori, et al., Eur. Phys. J. D, 26, 79 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    V. T. Platonenko and V. Strelkov, J. Opt. Soc. Am. B, 16, 435 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    M. D. Perry and J. K. Crane, Phys. Rev. A, 48, No. 6, Art. no. 013405 (1993).Google Scholar
  14. 14.
    J. B. Bertrand, H. J. Worner, H.-C. Bandulet, et al., Phys. Rev. Lett., 106, Art. no. 023001 (2011).Google Scholar
  15. 15.
    H. Hamster, A. Sullivan, S. Gordon, et al., Phys. Rev. E, 49, 671 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    L. M. Gorbunov and A. A. Frolov, J. Exp. Theor. Phys., 83, 967 (1996).ADSGoogle Scholar
  17. 17.
    D. J. Cook and R. M. Hochstrasser, Opt. Lett., 25, No. 16, 1210 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    N. Karpowicz and X.-C. Zang, Phys. Rev. Lett., 102, Art. no. 093001 (2009).Google Scholar
  19. 19.
    J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett., 103, Art. no. 023001 (2009).Google Scholar
  20. 20.
    K. Y. Kim, A. J. Taylor, J. H. Glownia, et al., Nature Photonics, 2, 605 (2008).CrossRefGoogle Scholar
  21. 21.
    P. Sprangle, J. R. Penano, B. Hafizi, et al., Phys. Rev. E 2004, 69, 066415 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    P. B. Corkum, Phys. Rev. Lett., 71, 13, 1994 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    M. B. Gaarde, A. L. Huillier, and M. Lewenstein, Phys. Rev. A, 54, No. 5, 4236 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    V. V. Strelkov, Phys. Rev. A, 74, Art. no. 013405 (2006).Google Scholar
  25. 25.
    P. Antoine, A. L. Huillier, M. Lewenstein, et al., Phys. Rev. A, 53, No. 3, 1725 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    M. V. Frolov, N. I.Manakov, T. S. Sarantseva, et al., Phys. Rev. Lett., 102, Art. no. 243901 (2009).Google Scholar
  27. 27.
    M. V. Frolov, N. L. Manakov, A. A. Silaev, et al., Phys. Rev. A, 81, Art. no. 063407 (2010).Google Scholar
  28. 28.
    V. T. Platonenko, Quantum Electron., 31, No. 1, 55 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, et al., Phys. Rev. A, 49, No. 3, 2117 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    N. Blombergen, Nonlinear Optics, Mir, Moscow (1966).Google Scholar
  31. 31.
    A. V. Andreev, S. Yu. Stremoukhov, and O. A. Shutova, Coll. Papers of Kiev State Univ., Ser. Fiz.-Math. Nauki [in Russian], Kiev (2010).Google Scholar
  32. 32.
    H. Eichmann, A. Egbert, S. Nolte, et al., Phys. Rev. A, 51, No. 5, Art. no. R3414 (1995).Google Scholar
  33. 33.
    A. V. Andreev, S. Yu. Stremoukhov, and O. A. Shutova, J. Exp. Theor. Phys., 11, No. 6, 936 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    A. V. Andreev, J. Exp. Theor. Phys., 89, 421 (1999).ADSCrossRefGoogle Scholar
  35. 35.
    A. V. Andreev, S. Yu. Stremoukhov, and O. A. Shutova, Teor. Fiz., 9, 36 (2008).Google Scholar
  36. 36.
    A. V. Andreev, S. Yu. Stremoukhov, and O. A. Shutova, J. Russian Laser Research, 2008. V. 29. P. 203 (2008).Google Scholar
  37. 37.
    L. V. Keldysh, Sov. Phys. JETP, 20, 1307 (1965).MathSciNetGoogle Scholar
  38. 38.
    L. D. Landau and E. M. Lifshits, The Classical Theory of Fields, Pergamon Press, N. Y. (1971).Google Scholar
  39. 39.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Academie, Berlin (1960).Google Scholar
  40. 40.
    L.D. Landau and E. M. Lifshits, Quantum Mechanics. Non-relativistic Theory, Butterworth-Heinemann, Oxford (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • A. V. Andreev
    • 1
  • S. Yu. Stremoukhov
    • 1
  • O. A. Shutova
    • 2
  1. 1.Moscow State Lomonosov UniversityMoscowRussia
  2. 2.International Laser Center of Moscow State Lomonosov UniversityMoscowRussia

Personalised recommendations