Radiophysics and Quantum Electronics

, Volume 53, Issue 11, pp 650–665 | Cite as

Completely bound motion of a positive-energy electron in the coulomb field of a motionless nucleus and a uniform magnetic field

  • S. A. Arsenyev
  • S. A. Koryagin

We show that the completely bound classical motion of a positive-energy electron is realized in the Coulomb field of a motionless nucleus and a uniform magnetic field. Such a motion exists due to conservation of the so-called invariant tori in the phase space of the system for not only the negative, but also for the positive energy of an electron. The completely bound trajectories occupy a much larger interval of the velocity directions compared with free trajectories for the same energy in a range of distances from the nucleus in which the typical time of the electron transit near the nucleus is larger than the cyclotron-gyration period, while the negative energy of Coulomb interaction is larger (in absolute value) than the total electron energy. The indicated range of distances is realized in the case of a low electron energy or a strong magnetic field when the Larmor radius of the electron is smaller than the characteristic impact parameter of the close Coulomb collisions in the absence of a magnetic field. The required conditions are realized in the photospheres of isolated magnetic white dwarfs and in the experiments on creation of antihydrogen.


Turning Point Pitch Angle Rotation Number Transverse Velocity Electron Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Rosner, G. Wunner, H. Herold, and H. Ruder, J. Phys. B, 17, 29 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    S. Jordan, Astron. Astrophys., 265, 570 (1992).ADSGoogle Scholar
  3. 3.
    D. T. Wickramasinghe and L. Ferrario, Publ. Astron. Soc. Pacific, 112, 873 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Zheleznyakov, Radiation in Astrophysical Plasmas [in Russian], Yanus-K, Moscow (1997).Google Scholar
  5. 5.
    V. V. Zheleznyakov, S. A. Koryagin, and A. V. Serber, Astron. Lett., 25, No. 7, 437 (1999).ADSGoogle Scholar
  6. 6.
    S. A. Koryagin, JETP, 90, No. 5, 741 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    G. Schmidt, E. E. Kunhardt, and J. L. Godino, Phys. Rev. E, 62, 7512 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    B. Hu, W. Horton, C. Chiu, and T. Petrosky, Phys. Plasmas, 9, 1116 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    B. Hu, W. Horton, and T. Petrosky, Phys. Rev. E, 65, 056212 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    C. E. Correa, J. R. Correa, and C. A. Ordonez, Phys. Rev. E, 72, 046406 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    S. A. Koryagin, Radiophys. Quantum Electron., 51, No. 6, 462 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    S. A. Koryagin, Radiophys. Quantum Electron., 51, No. 8, 616 (2008).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    B. R. Beck, J. Fajans, and J. H. Malmberg, Phys. Rev. Lett., 68, 317 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    M. Amoretti, C. Amsler, G. Bonomi, et al., Nature, 419, 456 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    G. Gabrielse, N. S. Bowden, P. Oxley, et al., Phys. Rev. Lett., 89, 213401 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    H. Friedrich and D. Wintgen, Phys. Rep., 183, 37 (1989).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    J. B. Delos, S. K. Knudson, and D. W. Noid, Phys. Rev. A, 30, 1208 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Dynamics, Springer-Verlag, New York (1992).Google Scholar
  19. 19.
    J. M. Greene, J. Math. Phys., 20, 1183 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    M. A. Lieberman and A. J. Lichtenberg, Plasma Phys., 15, 125 (1973).ADSCrossRefGoogle Scholar
  21. 21.
    E. V. Suvorov and M. D. Tokman, Sov. J. Plasma Phys, 15, 540 (1989).Google Scholar
  22. 22.
    É. Forest, J. Phys. A, 39, 5321 (2006).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    I. I. Bubukina and S. A. Koryagin, JETP, 108, No. 6, 917 (2009).ADSCrossRefGoogle Scholar

Copyright information

© wpringer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations