Radiophysics and Quantum Electronics

, Volume 53, Issue 3, pp 191–200 | Cite as

Scattering from an abruptly terminated planar metamaterial waveguide

  • A. B. Manenkov
  • P. G. Gerolymatos
  • I. G. Tigelis

We use a variational method to study the problem of reflection of a guided mode from an abruptly terminated planar dielectric waveguide made of a metamaterial. The theory is illustrated by problems of abruptly terminated three-layer waveguides with piecewise-constant and variable permittivity profiles. Differences in the scattering characteristics for systems with metamaterials and conventional media are discussed.


Dielectric Permittivity Radiation Mode Dispersion Function Abrupt Termination Transverse Wave Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ch. Vassallo, J. Opt. Soc. Am. A, 5, No. 6, 1918 (1988)Google Scholar
  2. 2.
    P. C. Kendall, D. A. Roberts, P. N. Robson, et al., IEE Proc. Part J, 140, No. 1, 49 (1993).Google Scholar
  3. 3.
    A. B. Manenkov, Radiophys. Quantum Electron., 25, No. 12, 1050 (1982).CrossRefADSGoogle Scholar
  4. 4.
    A. B. Manenkov, IEE Proc. J, 139, No. 3, 194 (1992).Google Scholar
  5. 5.
    I. G. Tigelis and A. B. Manenkov, J. Opt. Soc. Am. A, 17, No. 12, 2249 (2000).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    D. R. Smith, W. J. Padilla, D. C. Vier, et al., Phys. Rev. Lett., 84, No. 18, 4184 (2000).CrossRefADSGoogle Scholar
  7. 7.
    R. Ruppin, Phys. Lett. A, 277, 61 (2000).CrossRefADSGoogle Scholar
  8. 8.
    I. B. Vendik, O. G. Vendik, and M. A. Odit, Phys. Solid State, 51, No. 8, 1590 (2009).CrossRefADSGoogle Scholar
  9. 9.
    I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev. E, 67, 057602 (2003).CrossRefADSGoogle Scholar
  10. 10.
    Y. He, Z. Cao, and Q. Shen, Opt. Commun., 245, 125 (2005).CrossRefADSGoogle Scholar
  11. 11.
    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, Princeton (2008).MATHGoogle Scholar
  12. 12.
    A. A. Bulgakov, A. V. Meriuts, and E. A .Ol’khovskiĭ, Tech. Phys., 49, No. 10, 1349 (2004).CrossRefGoogle Scholar
  13. 13.
    L. Lewin, Theory of Waveguides, Newness-Butterworths, London (1975).Google Scholar
  14. 14.
    R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York (1961).Google Scholar
  15. 15.
    L. A. Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1982).Google Scholar
  16. 16.
    A. B. Manenkov, Radiophys. Quantum Electron., 13, No. 5, 578 (1970).CrossRefADSGoogle Scholar
  17. 17.
    N. F. Dasyras, I. G. Tigelis, A. D. Tsigopoulos, and A. B. Manenkov, J. Opt. Soc. Am. A, 21, No. 9, 1740 (2004).CrossRefADSGoogle Scholar
  18. 18.
    V. S. Ryaben’kiy, Introduction to Computational Mathematics [in Russian], Nauka, Moscow (1984).Google Scholar
  19. 19.
    I. V. Dmitrieva, Mathematical Models of Applied Electrodynamics [in Russian], Moscow State Univ., Moscow (1984), p. 182.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. B. Manenkov
    • 1
    • 2
  • P. G. Gerolymatos
    • 1
    • 2
  • I. G. Tigelis
    • 1
    • 2
  1. 1.P. L. Kapitsa Institute for Physical Problems of the Russian Academy of SciencesMoscowRussia
  2. 2.University of Athens, Faculty of PhysicsAthensGreece

Personalised recommendations