Advertisement

Radiophysics and Quantum Electronics

, Volume 53, Issue 3, pp 207–213 | Cite as

The method of calculating forced oscillations in nonlinear discrete-time systems under periodic external actions

  • Yu. A. Bryuhanov
Article

We consider a method for calculating forced oscillations in nonlinear discrete-time systems under periodic external actions. The method is based on representing the stationary oscillations in the form of an invariant set of nonlinear discrete point mappings and allows one to calculate the nonlinear-system response in the steady-state regime. The examples of using this method for calculating forced oscillations in the first- and second-order nonlinear recursive systems under the harmonic-signal action on such systems are presented.

Keywords

Forced Oscillation Invariant Point Structural Diagram Stationary Oscillation Recursive System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Kappellini, A. G. Constantinides, and P. Emiliani, Digital Filters and Their Applications, Academic Press, London (1978).Google Scholar
  2. 2.
    P. S. Strelkov, Introduction to the Theory of Oscillations [in Russian], Nauka, Moscow (1964).Google Scholar
  3. 3.
    L. Rabiner and B. Gold, Theory and Applications of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N.J. (1975).Google Scholar
  4. 4.
    Yu. A. Bryukhanov, Izv. Vyssh. Uchebn. Zaved., Radioelélektron., No. 9, 46 (1994).Google Scholar
  5. 5.
    Yu. A. Bryukhanov, Izv. Vyssh. Uchebn. Zaved., Radioelélektron., No. 11, 37 (1996).Google Scholar
  6. 6.
    Yu. A. Bryukhanov, Radiotekhnika, No. 12, 74 (1997).Google Scholar
  7. 7.
    Yu. A. Bryukhanov, J. Commun. Technol. Electron., 42, No. 7, 776 (1997).Google Scholar
  8. 8.
    Yu. A. Bryukhanov, Izv . Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 7, No. 4, 29 (1999).Google Scholar
  9. 9.
    Yu. A. Bryukhanov, Izv . Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 8, No. 6, 88 (2000).Google Scholar
  10. 10.
    Yu. A. Bryukhanov, Radiophys. Quantum Electron., 44, No. 11, 900 (2001).CrossRefMathSciNetGoogle Scholar
  11. 11.
    Yu. I. Neimark, The Point Mapping Method in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1972).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.P. G. Demidov Yaroslavl’ State UniversityYaroslavl’Russia

Personalised recommendations