Skip to main content
Log in

Microwave spectroradiometer complex for remote study of the stratosphere thermal structure

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe a microwave spectroradiometer for thermal sensing of the stratosphere in the molecular oxygen lines located on the slope of a 5-mm band. An uncooled low-noise high-frequency amplifier ensures the device noise temperature 1400 K. The frequency resolution of the used filtering analyzer varies from 0.5 MHz at the center of the line to 15 MHz at its boundary. The through calibration of the spectroradiometer is performed by an electrically controlled noise generator on the basis of the Schottky-barrier diode. The accuracy of the temperature recovery in the altitude range 20–55 km is estimated from the results of surface measurements of the atmospheric emission in the line with a central frequency of 53.0669 GHz. Model calculations based on the Bayesian approach show that the temperature-recovery accuracy no worse than 10 K for the confidence interval 95% can be achieved during an observation period of about half an hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Naumov, N.N. Osharina, and A.V. Troitsky, Radiophys. Quantum Electron., 42, No. 1, 39 (1999).

    Article  ADS  Google Scholar 

  2. J.W. Waters, L. Froidevaux, R. S. Harwood, et al., IEEE Trans. Geos. Remote Sens., 44, No. 5, 10754 (2006).

    Google Scholar 

  3. W.J. Blackwell, IEEE Trans. Geos. Remote Sens., 43, No. 11, 2535 (2005).

    Article  ADS  Google Scholar 

  4. A. von Engeln and S. Buhler, J. Geophys. Res. D, 107, No. 19, 4395 (2002).

    Article  ADS  Google Scholar 

  5. J. W. Waters, Nature, 242, 506 (1973).

    Article  ADS  Google Scholar 

  6. N. N. Markina, J. Commun. Technol. Electron.., 41, No. 2, 157 (1996).

    Google Scholar 

  7. H. J. Liebe, P.W. Rosenkranz, and G.A. Hufford, J. Quant. Spectrosc. Radiat. Transfer, 48, Nos. 5–6, 629 (1992).

    Article  ADS  Google Scholar 

  8. M.Yu. Tretyakov, V.V. Parshin, M.A. Koshelev, et al., J. Molec. Spectrosc., 218, 239 (2003).

    Article  ADS  Google Scholar 

  9. L. I. Fedoseev, V.G. Bozhkov, V.A. Genneberg, et al., Radiophys. Quantum Electron., 50, Nos. 10–11, 858 (2007).

    Article  ADS  Google Scholar 

  10. L. I. Fedoseev, A.A. Shvetsov, A.P. Shkaev, et al., in: Proc. Int. Conf. “Microwave Techniques and Telecommunication Technologies,” Veber, Sevastopol (2008), Vol. 2, p. 878.

  11. Ya. I. Molkov, D. N. Mukhin, E.V. Suvorov, and A. M. Feigin, Radiophys. Quantum Electron., 46, Nos. 8–9, 675 (2003).

    Article  ADS  Google Scholar 

  12. D. N. Mukhin, A.M. Feigin, Ya. I. Molkov, and E.V. Suvorov, Adv. Space Res., 37, No. 12, 2292 (2006).

    Article  ADS  Google Scholar 

  13. D. A. Karashtin, D. N. Mukhin, A.M. Feigin, and N.K. Skalyga, “Bayesian approach to recovery of the vertical profile of the stratospheric temperature from the data of the surface measurements of the solar radiation spectrum in millimeter lines of absorption of molecular oxygen,” Preprint No. 772 [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2008).

  14. S. Chib and E. Greenberg, American Statistician, 49, No. 4, 327 (1995).

    Article  Google Scholar 

  15. Yu.Yu. Kulikov, V.G. Ryskin, and A.A. Krasil’nikov, Izv. Atmos. Ocean. Phys., 39, Suppl. 1, S56 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shvetsov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 52, No. 8, pp. 671–677, August 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvetsov, A.A., Demkin, V.M., Karashtin, D.A. et al. Microwave spectroradiometer complex for remote study of the stratosphere thermal structure. Radiophys Quantum El 52, 603–608 (2009). https://doi.org/10.1007/s11141-010-9159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-010-9159-2

Keywords

Navigation