Advertisement

Radiophysics and Quantum Electronics

, Volume 52, Issue 4, pp 241–251 | Cite as

Sounding of an artificially perturbed ionosphere by means of an ionosonde/position finder with chirp modulation of the signal

  • V. P. Uryadov
  • G. G. Vertogradov
  • V. G. Vertogradov
  • S. V. Kubatko
  • A. A. Ponyatov
  • Yu. N. Cherkashin
  • I. V. Krasheninnikov
  • V. A. Valov
  • G. P. Komrakov
  • A. V. Makarov
  • D. V. Bredikhin
Article

We describe the operation of an ionosonde/position finder with chirp modulation of the signal. The first results of measuring the characteristics of short-wave radio signals scattered by artificial small-scale inhomogeneities, which were obtained by means of an ionosonde/position finder on the IZMIRAN—“SURA”—Rostov-on-Don path are presented. It was found that under certain ionospheric conditions, the angular and frequency selection of the scattered signals take place, in which case the signals are observed simultaneously in several frequency intervals (mainly, in three, namely, 6–9.5 MHz, 10–12 MHz, and 15–18 MHz) with different angles of incidence of radio waves in the vertical plane. In this case, the incidence angles were 20◦–35◦, 18◦–32◦, and 10◦–20◦ from the horizon for the first, second, and third frequency interval, respectively. Ionograms of oblique sounding were modeled allowing for the scattering of radio waves by artificial small-scale inhomogeneities. It is shown that at frequencies from 10 to 12 MHz, aspect conditions are fulfilled for the signals ducting along the high-angle beam (Pedersen mode). At frequencies 15–18 MHz (higher than the maximum observable frequency of the forward signal on the path IZMIRAN—Rostov-on-Don), aspect scattering conditions are fulfilled for the signals incident on a scattering area in the ascending part of the trajectory. At low frequencies 6–9.5 MHz (below the maximum observed frequency of the forward signal on the IZMIRAN—Rostov-on-Don path), the observable additional signals are caused by the scattering of radio waves by artificial inhomogeneities with subsequent relfection of the scattered signal from the Earth on the “SURA”—Rostov-on-Don path.

Keywords

Radio Wave Electron Number Density Scattered Signal Linear Frequency Modulation Ionospheric Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Ponyatov and V.P. Uryadov, in: Proc. All-Russia Scientific Conf. “Wide-band Signals in Radar Applications, Communication, and Acoustics,” Murom Institute of Vladimir State University, Murom (2003), p. 233.Google Scholar
  2. 2.
    V. A. Ivanov, V. I. Kurkin, V. E. Nosov, et al., Radiophys. Quantum Electron., 46, No. 11, 84 (2003).CrossRefGoogle Scholar
  3. 3.
    J.M. Goodman, J.W. Ballard, E.D. Sharp, and T. Luong, Proc. Session G5 at the XXVth GA URSI, Boulder (1998), p. 64.Google Scholar
  4. 4.
    V.P. Uryadov, A. A. Ponyatov, G.G. Vertogradov, et al., Int. J. Geomag. Aeronomy, 6, No. 1, Art. no. GI10002 (2005).Google Scholar
  5. 5.
    G. G. Vertogradov, V.G. Vertogradov, and V.P. Uryadov, Radiophys. Quantum Electron., 49, No. 12, 923 (2006).CrossRefADSGoogle Scholar
  6. 6.
    E. G. Saltykov, Numerical Methods of Solving Inverse Problems of Mathematical Physics, in: Coll. Papers of Moscow State University [in Russian], 147 (1988).Google Scholar
  7. 7.
    G. G. Vertogradov, V. P. Uryadov, and V. G. Vertogradov, in: Int. Scientific Conf. “Emission and Scattering of Electromagnetic Waves” (IREMV–2007), 25–30 June 2007, Taganrog, p. 52.Google Scholar
  8. 8.
    G. G. Vertogradov, V.P. Uryadov, V.N. Shevchenko, and V.G. Vertogradov, Élektromag. Volny: Élektron. Sist., 12, No. 5, 25 (2007).Google Scholar
  9. 9.
    V.P. Uryadov, G. G. Vertogradov, V.G. Vertogradov, et al., in: Proc. XXII All-Russia Scientific Conf. on Propagation of Radio Waves, 22–26 September 2008, Loo, Rostov-on-Don, Vol. 2, p. 214.Google Scholar
  10. 10.
    N.D. Philipp, N. Sh. Blaunshtein, L.M. Erukhimov, et al., Modern Methods of Studying Dynamic Processes in the Ionosphere [in Russian], Stiintsa, Kishinev (1991).Google Scholar
  11. 11.
    B. G. Barabashov and G.G. Vertogradov, Izv. Vyssh. Uchebn. Zaved., North-Caucasian Region, Natural Sciencies, No. 3, 39 (1994).Google Scholar
  12. 12.
    P. J. D. Gething, Radio Direction-Finding and Resolution of Multicomponent Wave-Fields, Peter Peregrinus Ltd., London (1976).Google Scholar
  13. 13.
    P. J. D. Gething, Radio Direction Finding and Superresolution, Peter Peregrinus Ltd., London (1990).Google Scholar
  14. 14.
    V. N. Shevchenko, G. G. Vertogradov, and N. M. Ivanov, RF Patent 2150122 7G01S 3/14, 5/04 “Method for Determination of the two-dimensional bearing and frequency of radio sources”, appl. 06.04.99, publ. 27.05.2000., Bull. No. 15.Google Scholar
  15. 15.
    A. A. Ponyatov and V.P. Uryadov, Computer Simulation of Ionospheric Propagation of Short Radio Waves, Preprint No. 428, Radiophysical Research Institute, Nizhny Novgorod (1996).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • V. P. Uryadov
    • 1
  • G. G. Vertogradov
    • 2
  • V. G. Vertogradov
    • 2
  • S. V. Kubatko
    • 2
  • A. A. Ponyatov
    • 1
  • Yu. N. Cherkashin
    • 3
  • I. V. Krasheninnikov
    • 3
  • V. A. Valov
    • 4
  • G. P. Komrakov
    • 1
  • A. V. Makarov
    • 4
  • D. V. Bredikhin
    • 4
  1. 1.Radiophysical Research InstituteNizhny NovgorodRussia
  2. 2.South Federal UniversityRostov-on-DonRussia
  3. 3.Institute of Terrestrial Magnetism Ionosphere and Radiowave Propagation of the Russian Academy of Sciences (IZMIRAN)Moscow regionRussia
  4. 4.Scientific and Production Enterprise “Polyot”Nizhny NovgorodRussia

Personalised recommendations