Radiophysics and Quantum Electronics

, Volume 52, Issue 4, pp 262–272 | Cite as

Non-great-circle propagation modes on the high-latitude HF radio path

  • D. V. Blagoveshchensky
  • T. D. Borisova
  • A. S. Kalishin

We consider characteristics of the non-great-circle signals on the Murmansk—St. Petersburg oblique sounding path with a distance of 1050 km. The path crosses the main ionospheric trough and is highly influenced by the trough’s polar wall and the boundary of diffuse precipitations. Field-aligned ionospheric irregularities and ionization gradients are often observed in this area. The data analysis was performed for quiet, moderately disturbed, and strongly disturbed conditions and for different local times. The main results are as follows. Non-great-circle signals in the form of scattered waves mostly occur in the nighttime hours. The nighttime non-great-circle signals always appear under both quiet and disturbed conditions, while the signals reflected from the ionization gradients appear at any local time during the disturbed periods (storms, substorms). Non-great-circle signals with intense reflections from the ionization gradients are most often observed during a moderate disturbance, especially in the nighttime hours. The ray-tracing model of non-great-circle propagation shows that the calculated oblique sounding ionograms generally coincide with the experimental ones.


Radio Wave Ionization Gradient Auroral Oval Ionospheric Irregularity Range Spread 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Angling, P. S. Cannon, N. C. Davies, et al., Radio Sci., 33, 97 (1998).CrossRefADSGoogle Scholar
  2. 2.
    D. V. Blagoveshchensky, T. D. Borisova, J. W. MacDougall, Ann. Geophys., 24, 1839 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    D. R. Siddle, A. J. Stocker, and E.M. Warrington, Radio Sci., 39, RS4008 (2004).CrossRefADSGoogle Scholar
  4. 4.
    A. J. Stocker, E.M. Warrington, and T.B. Jones, Radio Sci., 38, No. 3, 1045 (2003).CrossRefADSGoogle Scholar
  5. 5.
    L. S. Wagner, J.A. Goldstein, M.A. Rupar, et al., Radio Sci., 30, 659 (1995).CrossRefADSGoogle Scholar
  6. 6.
    E.M. Warrington and A. J. Stocker, Radio Sci., 38, No. 5, 1080 (2003).CrossRefADSGoogle Scholar
  7. 7.
    R. T. Tsunoda, Rev. Geophys., 26, No. 4, 719 (1988).CrossRefADSGoogle Scholar
  8. 8.
    R.D. Hunsucker and J. K. Hargreaves, The High-Latitude Ionosphere and Its Effects on Radio Propagation, Cambridge Univ. Press (2003).Google Scholar
  9. 9.
    V. B. Ivanov and M.V. Tolstikov, J. Atmos. Sol.-Terr. Phys., 65, 673 (2003).CrossRefADSGoogle Scholar
  10. 10.
    B. N. Gershman, É. S. Kazimirovsky, V.D. Kokourov, et al., The F-Spread Phenomenon in the Ionosphere [in Russian], Nauka, Moscow (1984).Google Scholar
  11. 11.
    A. S. Rodger, J. Atmos. Terr. Phys., 46, No. 4, 335 (1984).CrossRefADSGoogle Scholar
  12. 12.
    T.A. Anufrieva and B. S. Shapiro, Geometric Parameters of the Ionospheric F 2 Layer [in Russian], Nauka, Moscow (1976).Google Scholar
  13. 13.
    D. V. Chernyshov and T.N. Vasil’yeva, Prediction of Maximum Critical Frequencies; W=10, 50, 150, and 200 [in Russian], Nauka, Moscow (1975).Google Scholar
  14. 14.
    K. Rawer, S. Ramakrishnan, and D. Bilitza, International Reference Ionosphere, URSI, COSPAR, Brussels (1978).Google Scholar
  15. 15.
    D. V. Blagoveshchensky and T. D. Borisova, Geomagn. Aéron., 29, No. 4, 696 (1989).Google Scholar
  16. 16.
    T. D. Borisova, A.N. Baranets, and Yu. N. Cherkashin, in: Yu.N. Cherkashin, ed., Radio Wave Propagation in the Ionosphere [in Russian], Nauka, Moscow (1986), p. 12.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • D. V. Blagoveshchensky
    • 1
  • T. D. Borisova
    • 2
  • A. S. Kalishin
    • 2
  1. 1.State University of Aerospace InstrumentationSt. PetersburgRussia
  2. 2.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations