Advertisement

Radiophysics and Quantum Electronics

, Volume 51, Issue 12, pp 966–974 | Cite as

Determination of dielectric properties of ore minerals in the microwave band

  • V. V. Tikhonov
  • O. N. Polyakova
  • G. N. Gol’tsman
  • A. L. Dzardanov
  • D. A. Boyarskiy
Article

We consider a method for determining the complex dielectric permittivity of ore and nonmetal minerals in the microwave band of electromagnetic radiation. The results of measuring the reflectivity and transmittivity of chalcopyrite, magnetite, sphalerite, and labradorite samples in the frequency range 77–300 GHz are presented. A method for calculation of the complex dielectric permittivity of minerals on the basis of the obtained experimental data is proposed. The approximation formulas for calculation of the complex dielectric permittivity of the studied minerals are given.

Keywords

Magnetite Chalcopyrite Target Function Mineral Sample Radiation Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. N. Sobolev, Methods of Optical Studies of Minerals: Handbook [in Russian], Nedra, Moscow (1990).Google Scholar
  2. 2.
    L. K. Yakhontova and V. P. Zvereva, Fundamentals of Hypergenesis Mineralogy [in Russian], Dal’nauka, Vladivostok (2000).Google Scholar
  3. 3.
    S. P. Clark, Jr., ed., Handbook of Physical Constants, The Geological Society of America, New York (1966).Google Scholar
  4. 4.
    O. I. Yakovlev, Cosmic Radiophysics [in Russian], Nauchnaya Kniga, Moscow (1998).Google Scholar
  5. 5.
    V. A. Chanturiya, Fiz.-Tekh. Probl. Razr. Polezn. Iskop., No. 3, 107 (1999).Google Scholar
  6. 6.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Lights by Small Particles, Wiley, New York (1983).Google Scholar
  7. 7.
    E. M. Gershenzon, M. B. Golant, A. A. Negirev, and K. S. Savel’ev, Backward-Wave Oscillators of the Millimeter- and Submillimeter-Wave Ranges [in Russian], Radio i Svyaz, Moscow (1985).Google Scholar
  8. 8.
    M. H. Battey and A. Pring, Mineralogy for Students, Addison-Wesley, New York (1997).Google Scholar
  9. 9.
    M. Born and E. Wolf, Principles of Optics, Cambridge Univ. Press, New York (1999).Google Scholar
  10. 10.
    D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York (1972).MATHGoogle Scholar
  11. 11.
    D. A. Boyarskiy, V. E. Gershenzon, E. M. Gershenzon, et al., Radiotekh. Élektron., 41, No. 4, 441 (1996).Google Scholar
  12. 12.
    V. M. Zolotarev, V. N. Morozov, and E. V. Smirnov, Optical Constants of Natural and Technical Media [in Russian], Khimiya, Leningrad (1984).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. V. Tikhonov
    • 1
  • O. N. Polyakova
    • 2
  • G. N. Gol’tsman
    • 2
  • A. L. Dzardanov
    • 2
  • D. A. Boyarskiy
    • 1
  1. 1.Space Research Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations