Advertisement

Radiophysics and Quantum Electronics

, Volume 51, Issue 9, pp 718–725 | Cite as

Stark effect of symmetric-top rotational levels

  • S. N. Andreev
  • V. P. Makarov
Article
  • 71 Downloads

The method developed for a rotator in [1] is used for an analytical study of the Stark effect of symmetric-top rotational levels in the strong-field limit.

Keywords

Harmonic Oscillator Stark Effect Linear Molecule Minor Oscillation Quasiclassical Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Gaponov, Yu. N. Demkov, N. G. Protopopova, and V. M. Fain, Opt. Spektrosk., 19, 501 (1965).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Butterworth-Heinemann, Oxford (2002).Google Scholar
  3. 3.
    H. K. Hughes, Phys. Rev., 72, 614 (1949).CrossRefADSGoogle Scholar
  4. 4.
    P. J. Bertoncini, R. H. Land, and S. A. Marshall, J. Chem. Phys., 52, 5964 (1970).CrossRefADSGoogle Scholar
  5. 5.
    K. Meyenn, Z. Phyzik, 231, 154 (1979).CrossRefGoogle Scholar
  6. 6.
    C. Townes and A. Schawlow, Microwave Spectroscopy, McGraw-Hill, New York (1955).Google Scholar
  7. 7.
    B. G. West and M. Mizushima, J. Chem. Phys., 38, 251 (1963).CrossRefADSGoogle Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Mechanics, Butterworth-Heinemann, Oxford (1991).Google Scholar
  9. 9.
    V. I. Smirnov, A Course in Higher Mathematics, Vol. 3, part 2 [in Russian], Gortekhteoretizdat (1956).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.A. M. Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations