Determination of Parameters of Simply Shaped Bodies from Scattering of Ultrashort Pulses

  • S. N. Kutishchev
  • P. A. Golovinskii

We consider the reflection of an ultrashort pulse from a motionless extended object having cylindrical symmetry. The reflected pulse is described using the nonstationary Kirchhoff integral. The parameters of body boundaries shaped as circular arcs, straight lines, parabolas, and splines are reconstructed using neural networks. The obtained results allow one to perform spatial visualization of the object. The limitations and possibilities of the further development of the method are presented.


Neural Network Inverse Problem Direct Problem Ultrashort Pulse Electrodynamic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. G. Sodin, Radiotekh. Élektron., 36, 1014 (1991).ADSGoogle Scholar
  2. 2.
    L. G. Sodin, Radiotekh. Élektron., 37, 849 (1992).ADSGoogle Scholar
  3. 3.
    A. L. Gutman, J. Commun. Technol. Electron., 42, No. 3, 247 (1997).MathSciNetGoogle Scholar
  4. 4.
    V. A. Aleshkevich and V. K. Peterson, JETP Lett., 66, No. 5, 344 (1997).CrossRefADSGoogle Scholar
  5. 5.
    E. M. Mikhaĭlov and P. A. Golovinskiĭ, JETP Lett., 90, No. 2, 240 2000.Google Scholar
  6. 6.
    N. M. Astaf’eva, Usp. Fiz. Nauk, 166, 1145 (1996).CrossRefGoogle Scholar
  7. 7.
    P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953).MATHGoogle Scholar
  8. 8.
    C. L. Bennet and W. L. Weeks, IEEE Trans. Antennas Propagat., AP-18, No. 5, 627 (1970).CrossRefADSGoogle Scholar
  9. 9.
    V. O. Kobak, Radar Reflectors [in Russian], Sovetskoe Radio, Moscow (1975).Google Scholar
  10. 10.
    Neural Networks: STATISTICA Neural Networks [in Russian], Goryachaya Linia–Telekom, Moscow (2001).Google Scholar
  11. 11.
    S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Englewood Cliffs, N.J. (1998).Google Scholar
  12. 12.
    Numerical Methods: MatLAB Applications [in Russian], Williams, Moscow (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Voronezh State Architectural and Civil Engineering UniversityVoronezhRussia

Personalised recommendations