Double-polarization fiber ring interferometer based on a single-mode isotropic fiber for gyroscopy

  • V. M. Gelikonov
  • G. V. Gelikonov
  • I. A. Andronova


We propose and implement the scheme of a whole-fiber double-polarization ring interferometer based on an isotropic fiber for gyroscopy purposes. The results of an experimental study of the output signal of the interferometer based on the proposed scheme are presented. The shift of the zero point of the interferometer signal (at a level of 3°/h) and the drift of the zero point (at a level of 1°/h) are determined. The rotation sensitivity of the interferometer is measured. It amounts to 0.1°/h, which agrees well with the calculation allowing for the shot noise of the photoelectric current at the output of the scheme.


Shot Noise Sagnac Interferometer Ring Interferometer Interferometer Signal Photoelectric Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. F. Ezekiel, in: S. Ezekiel and H. J. Arditty, eds., in: Fiber-Optic Rotation Sensors, Springer-Verlag, Berlin, (1982), p. 2.Google Scholar
  2. 2.
    I. A. Andronova and G. B. Malykin, Physics Uspekhi, 45, 793 (2002).CrossRefADSGoogle Scholar
  3. 3.
    I. A. Andronova, G. V. Gelikonov, and G. B. Malykin, Quantum Electron., 29, No. 3, 271 (1999).CrossRefGoogle Scholar
  4. 4.
    I. A. Andronova, V. M. Gelikonov, G. V. Gelikonov, and D. P. Stepanov, Radiophys. Quantum Electron., 40, No. 6, 518 (1997).CrossRefADSGoogle Scholar
  5. 5.
    I. A. Andronova, V. M. Gelikonov, and D. P. Stepanov, Quantum Electron., 24, No. 9, 805 (1994).CrossRefGoogle Scholar
  6. 6.
    B. Szafraniec and J. Blake, J. Lightwave Technol., 12, No. 9, 1679 (1994).CrossRefADSGoogle Scholar
  7. 7.
    V. N. Listvin and V. N. Logozinskii, Radiophys. Quantum Electron., 34, No. 9, 791 (1991).CrossRefADSGoogle Scholar
  8. 8.
    R. Ulrich and M. Johnson, Opt. Lett., 4, 152 (1979).ADSGoogle Scholar
  9. 9.
    G. Schiffner, W. K. Leeb, H. Krammer, et al., Appl. Opt., 18, No. 13, 2096 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    R. Ulrich, Opt. Lett., 5, No. 5, 173 (1980).ADSGoogle Scholar
  11. 11.
    J. Jones and J. W. Parker, Electr. Lett., 19, No. 5, 187 (1983).CrossRefGoogle Scholar
  12. 12.
    K. Bohm, K. Petermann, and E. Weidel, J. Lightwave Technol., 1, No. 1, 71 (1983).CrossRefADSGoogle Scholar
  13. 13.
    V. M. Gelikonov, R. V. Kuranov, and A. N. Morozov, Quantum Electron., 32, No. 1, 59 (2002).CrossRefGoogle Scholar
  14. 14.
    I. A. Andronova, V. M. Gelikonov, and G. V. Gelikonov, Quantum Electron., 30, No. 2, 115 (2000).CrossRefGoogle Scholar
  15. 15.
    V. I. Tikhonov, Outliers of Random Processes [in Russian], Nauka, Moscow (1970).Google Scholar
  16. 16.
    I. A. Andronova and I. L. Bershtein, Radiophys. Quantum Electron., 32, No. 4, 321 (1989).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. M. Gelikonov
    • 1
  • G. V. Gelikonov
    • 1
  • I. A. Andronova
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations