Radiophysics and Quantum Electronics

, Volume 51, Issue 2, pp 145–152 | Cite as

Estimation of the mobile user position in the cellular communication system in a multipath environment of signal propagation

  • V. T. Ermolayev
  • A. G. Flaksman
  • D. D. N. Bevan
  • I. M. Averin


We consider the problem of locating a mobile object (user) in the cellular communication system on the basis of the triangulation method and the Gaussian multipath-channel model under urban conditions of signal propagation. The probability density function of the maximum likelihood estimate of Cartesian coordinates of the user is found if two or three base stations arbitrarily located with respect to one another are used. It is shown that the user-locating error depends on the distance between the base stations, mutual location of the user and the base stations, and the variance of the user-bearing estimation error for each base station. In this case, using the third base station significantly improves the user-locating accuracy.


Global Position System Input Multiple Output User Location Urban Condition Multiple Input Multiple Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Zagami, S. A. Parl, J. J. Bussgang, and K. D. Melillo, IEEE Commun. Mag., 36, 66 (1998).CrossRefGoogle Scholar
  2. 2.
    T. S. Rappaport, J. H. Reed, and B. D. Woerner, IEEE Commun. Mag., 34, 33 (1996).CrossRefGoogle Scholar
  3. 3.
    A. Giordano, M. Chan, and H. Habal, Proc. IEEE PIMRC, 2, 853 (1995).Google Scholar
  4. 4.
    FCC Docket No. 94-102, “Revision of the commissions rules to insure compatibility with enhanced 911 emergency calling systems,” Tech. Rep. RM-8143, July 1996.Google Scholar
  5. 5.
    M. I. Skolnik, ed., Radar Handbook, McGraw-Hill, New York (1990).Google Scholar
  6. 6.
    O. Besson, F. Vincent, P. Stoica, and A. B. Gershman, IEEE Trans. Signal Proces., 48, No. 9, 2506 (2000).MATHCrossRefGoogle Scholar
  7. 7.
    S. Valaee, B. Champagne, and P. Kabal, IEEE Trans. Signal Proces., 43, No. 9, 2144 (1995).CrossRefGoogle Scholar
  8. 8.
    D. D. N. Bevan, V. T. Ermolayev, A. G. Flaksman, and I. M. Averin, EURASIP J. Appl. Signal Processing, No. 9, 1321 (2004).Google Scholar
  9. 9.
    D. D. N. Bevan, V. T. Ermolayev, A. G. Flaksman, et al., in: Proc. 13th European Signal Processing Conf., Turkey, Antalya, 2005.Google Scholar
  10. 10.
    K. Kuboi, S. Shirota, S. Sakagami, et al., IEEE Trans. Vehicular Technol., 41, 63 (1992).CrossRefGoogle Scholar
  11. 11.
    H. Holma and A. Toskala, WCDMA for UMTS: Radio Access for Third Generation Mobile Communications, Wiley, New York (2004).Google Scholar
  12. 12.
    K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, IEEE Trans. Vehicular Techn., 49, No. 2, 437 (2000).CrossRefGoogle Scholar
  13. 13.
    J. D. Parsons, The Mobile Radio Propagation Channel, Pentech Press, London (1992).Google Scholar
  14. 14.
    3GPP TR 25.996. Spatial channel model for Multiple Input Multiple Output (MIMO) simulations, Release 6, 2003.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. T. Ermolayev
    • 1
    • 2
  • A. G. Flaksman
    • 1
    • 2
  • D. D. N. Bevan
    • 3
  • I. M. Averin
    • 2
  1. 1.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Open Joint-Stock Company ‘Mera NN’Nizhny NovgorodRussia
  3. 3.Nortel Networks, Harlow LaboratoriesHarlowUK

Personalised recommendations