Millimeter and submillimeter EPR spectroscopy

  • A. A. Konovalov
  • V. F. Tarasov


For a long time, the electron paramagnetic resonance (EPR) spectrometers have been operated in X and Q bands with wavelengths of microwave radiation about 3 cm and 8 mm. Increasing the operating frequency improves the basic parameters of an EPR spectrometer. In view of this, there has recently been rapid development of high-frequency EPR spectroscopy, including the submillimeter-wave range, related to significant progress in the millimeter-and submillimeterwave technique. This paper discusses characteristic features, application areas, and the state of the art of the experimental technique of EPR spectroscopy in the millimeter-wave range and the short-wavelength region of the millimeter-wave range. The design features of the high-frequency EPR spectrometer operated in the frequency range 65–1500 GHz, which was created at the E. K. Zavoisky Physico-Technical Institute of the Kazan’ Scientific Center of the Russian Academy of Sciences, are presented. The results of studying the structure of the paramagnetic centers formed by impurity Ho3+ ions in synthetic forsterite (Mg2SiO4), obtained by the method of tunable high-frequency EPR spectroscopy, are reported.


Electron Paramagnetic Resonance Microwave Radiation Electron Paramagnetic Resonance Spectrum Forsterite Paramagnetic Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. K. Zavoisky, Zh. Éksp. Teor. Fiz., 15, No. 7, 344 (1945).Google Scholar
  2. 2.
    E. K. Zavoisky, Zh. Éksp. Teor. Fiz., 17, No. 2, 155 (1947).Google Scholar
  3. 3.
    I. I. Eru, Usp. Sovremen. Radioélektron., No. 3, 51 (1997).Google Scholar
  4. 4.
    M. Date, M. Motokawa, A. Siki, et al., J. Phys. Soc. Jpn., 39, 898 (1975).CrossRefADSGoogle Scholar
  5. 5.
    A. N. Vystavkin, É. É. Godik, V. N. Gubankov, et al., in: A. A. Kotel’nikov, ed., Problems in Modern Radio Engineering and Electronics [in Russian], Nauka, Moscow (1980), p. 359.Google Scholar
  6. 6.
    K. A. Earle, D. S. Tipikin, and J. H. Freed, Rev. Sci. Instrum., 67, 2502 (1996).CrossRefADSGoogle Scholar
  7. 7.
    E. J. Reijerse, P. J. van Dam, A. A. K. Klaassen, et al., Appl. Magn. Reson., 14, Nos. 2–3, 153 (1998).Google Scholar
  8. 8.
    J. M. Smith, J. C. G. Lesurf, R. H. Mitchell, and P. C. Riedi, Rev. Sci. Instrum., 69, No. 11, 3924 (1998).CrossRefADSGoogle Scholar
  9. 9.
    W. B. Lynch, K. A. Earle, and J. H. Freed, Rev. Sci. Instrum., 59, No. 3, 1345 (1988).CrossRefADSGoogle Scholar
  10. 10.
    V. R. Fach, T. F. Prisner, and K. Mobius, Rev. Sci. Instrum., 70, No. 9, 3681 (1999).CrossRefADSGoogle Scholar
  11. 11.
    M. Rohrer, O. Brügmann, B. Kinzer, and T. F. Prisner, Appl. Magn. Reson., 21, Nos. 3–4, 257 (2001).CrossRefGoogle Scholar
  12. 12.
    H. Blok, J. A. J. M. Disselhorst, S. B. Orlinskii, and J. Schmidt, J. Magn. Reson., 166, 92 (2004).CrossRefADSGoogle Scholar
  13. 13.
    Yu. A. Grishin, M. R. Fuchs, A. Schnegg, et al., Rev. Sci. Instrum., 75, No. 9, 2926 (2004).CrossRefADSGoogle Scholar
  14. 14.
    E. A. Vinogradov, N. A. Irisova, T. S. Mandel’shtam, and T. A. Shmaonov, Prib. Tekh. Éksp., No. 5, 192 (1976).Google Scholar
  15. 15.
    M. B. Golant, R. L. Vilenskaya, E. A. Zyulina, et al., Prib. Tekh. Éksp., No. 4, 136 (1965).Google Scholar
  16. 16.
    J. van Slageren, S. Vongtragool, V. Gorshunov, et al., Phys. Chem. Chem. Phys., 5, 3837 (2003).CrossRefGoogle Scholar
  17. 17.
    J. Magarino, J. Tuchendler, J. D’Haenens, and J. P. Linz, Phys. Rev. B, 13, No. 7, 2805 (1976).CrossRefADSGoogle Scholar
  18. 18.
    J. Magarino, J. Tuchendler, and J. P. D’Haenens, Phys. Rev. B, 14, No. 3, 865 (1976).CrossRefADSGoogle Scholar
  19. 19.
    R. J. Wagner and M. White, Solid State Commun., 32, No. 5, 399 (1979).CrossRefADSGoogle Scholar
  20. 20.
    P. Janssen, I. de Wolf, and I. Laursen, J. Phys. Chem. Solids, 46, No. 12, 1387 (1985).CrossRefADSGoogle Scholar
  21. 21.
    C. Kutter, H. P. Mol, J. van Tol, et al., Phys. Rev. Lett., 74, No. 15, 2925 (1995).CrossRefADSGoogle Scholar
  22. 22.
    F. Muller, M. A. Hopkins, N. Coron, et al., Rev. Sci. Instrum., 60, No. 12, 3681 (1989).CrossRefADSGoogle Scholar
  23. 23.
    M. Motokawa, H. Ohta, and N. Maki, Int. J. Infrared Millimeter Waves, 12, No. 2, 149 (1991).CrossRefADSGoogle Scholar
  24. 24.
    N. Nakagawa, T. Yamada, K. Akioka, et al., Int. J. Infrared Millimeter Waves, 19, No. 2, 167 (1998).CrossRefGoogle Scholar
  25. 25.
    A. K. Hassan, L. A. Pardi, J. Krzystek, et al., J. Magn. Reson., 142, 300 (2000).CrossRefADSGoogle Scholar
  26. 26.
    V. F. Tarasov and G. S. Shakurov, Appl. Magn. Reson., 2, No. 3, 571 (1991).Google Scholar
  27. 27.
    A. V. Gaister, E. V. Zharikov, A. A. Konovalov, et al., JETP Lett., 77, No. 11, 625 (2003).CrossRefADSGoogle Scholar
  28. 28.
    A. A. Konovalov, D. A. Lis, B. Z. Malkin, et al., Appl. Magn. Reson., 28, Nos. 3–4, 267 (2005).CrossRefGoogle Scholar
  29. 29.
    L. V. Bershov, R. M. Mineeva, A. V. Speransky, and S. Hafner, Dokl. Akad. Nauk, 260, No. 1, 191 (1981).Google Scholar
  30. 30.
    L. V. Bershov, J.-M. Gaite, and H. Rager, Phys. Chem. Minerals, 9, 95 (1983).CrossRefADSGoogle Scholar
  31. 31.
    J. D. Birle, G. V. Gibbs, P. B. Moore, and J. V. Smith, The American Mineralogist, 53, 807 (1968).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.E. K. Zavoisky Physico-Technical Institute of the Kazan’ Scientific Center of the Russian Academy of SciencesKazan’Russia

Personalised recommendations