Skip to main content
Log in

On the theory of self-modulation instability in an FEL amplifier due to stimulated scattering of counterpropagating waves

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We present the results of numerical simulation of the self-modulation processes in an amplifier based on the effect of stimulated scattering of two counterpropagating transverse electromagnetic waves by a relativistic electron beam (FEL amplifier). Two models of the studied system are considered. One model allows for the effects of overbunching of electrons and is based on the modified method of macroparticles. The other is a simplified wave model obtained in the approximation that the amplitude of a combination wave is small if the nonlinearity of the electron-beam processes is negligibly small. The mechanisms of self-modulation are studied. The scenarios of transition to chaos, observed with increase in the input-signal intensity and system length, are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Ginzburg, Zh. Tekh. Fiz., 56, No. 5, 938 (1986).

    Google Scholar 

  2. N. S. Ginzburg and A. S. Sergeev, Radiotekh. Élektron., 33, No. 3, 580 (1988).

    ADS  Google Scholar 

  3. N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Radiophys. Quantum Electron., 21, No. 7, 728 (1978).

    Article  ADS  Google Scholar 

  4. D. I. Trubetskov, S. P. Kuznetsov, N. M. Ryskin, and A. E. Khramov, in: A. V. Gaponov-Grekhov and V. I. Nekorkin, eds., Nonlinear Waves 2004 [in Russian], Inst. Appl. Phys., Rus. Acad. Sci., Nizhny Novgorod (2005), p. 287.

    Google Scholar 

  5. L. Shenggang, in: Proc. IV IEEE Int. Vacuum Electronics Conf., Seoul, Korea, May 28–30, 2003, p. 357.

  6. P. A. Sprangle and R. A. Smith, Phys. Rev. A, 21, No. 1, 293 (1980).

    Article  ADS  Google Scholar 

  7. B. G. Danly, G. Beke., R. C. Davidson, et al., IEEE J. Quantum Electron., 23, No. 1, 103 (1987).

    Article  ADS  Google Scholar 

  8. A. W. Fliflet, W. M. Manheimer, and R. Fischer, IEEE Trans. Plasma Sci., 22, No. 5, 638 (1994).

    Article  Google Scholar 

  9. A. W. Fliflet, W. M. Manheimer, and P. A. Sprangle, IEEE J. Quantum Electron., 33, No. 5, 669 (1997).

    Article  Google Scholar 

  10. N. S. Ginzburg, N. I. Zaitsev, E. V. Ilyakov, et al., Tech. Phys., 46, No. 11, 1420 (2001).

    Article  Google Scholar 

  11. N. S. Ginzburg, N. I. Zaitsev, E. V. Ilyakov, et al., Phys. Rev. Lett., 98, No. 10, 108304 (2002).

  12. N. S. Ginzburg and M. I. Petelin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 2, No. 6, 3 (1994).

    Google Scholar 

  13. N. S. Ginzburg, E. R. Kocharovskaya, and A. S. Sergeev, Tech. Phys., 44, No. 2, 203 (1999).

    Article  Google Scholar 

  14. V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, Sov. Phys. JETP., 49, No. 3, 469 (1979).

    Google Scholar 

  15. V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, in: Lectures in Microwave Electronics and Radiophysics (Fifth Winter Workshop for Engineers), Book 1 [in Russian], Saratov State Univ., Saratov (1980), p. 69.

    Google Scholar 

  16. M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  17. D. I. Trubetskov and A. G. Rozhnev, The Linear Oscillations and Waves [in Russian], Fizmatlit, Moscow (2001).

    Google Scholar 

  18. N. S. Ginzburg and A. S. Sergeev, Zh. Tekh. Fiz., 61, No. 6, 133 (1991).

    Google Scholar 

  19. V. L. Bratman and A. V. Savilov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 2, No. 6, 27 (1994).

    Google Scholar 

  20. A. V. Savilov, V. L. Bratman, G. G. Denisov, et al., Phys. Plasmas, 8, No. 2, 638 (2001).

    Article  ADS  Google Scholar 

  21. S. P. Kuznetsov, Radiophys. Quantum Electron., 25, No. 12, 996 (1992).

    Article  ADS  Google Scholar 

  22. B. A. Al’terkop, A. S. Volokitin, V. D. Shapiro, and V. I. Shevchenko, JETP Lett., 18, No. 1, 24 (1973).

    ADS  Google Scholar 

  23. M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in Plasmas [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  24. V. N. Shevchik and D. I. Trubetskov, Analytical Methods of Calculation in Microwave Electronics [in Russian], Sovetskoe Radio, Moscow (1970).

    Google Scholar 

  25. Yu. P. Bliokh, A. V. Borodkin, M. G. Lyubarsky, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 1, Nos. 1–2, 34 (1993).

    Google Scholar 

  26. T. M. Antonsen and B. Levush, Phys. Fluids B, 1, No. 5, 1097 (1989).

    Article  ADS  Google Scholar 

  27. N. M. Ryskin and A. M. Shigaev, Tech. Phys., 51, No. 1, 68 (2006).

    Article  Google Scholar 

  28. T. V. Dmitrieva and N. M. Ryskin, J. Exp. Theor. Phys., 93, No. 6, 1314 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  29. N. M. Ryskin, Radiophys. Quantum Electron., 47, No. 2, 116 (2004).

    Article  ADS  Google Scholar 

  30. N. M. Ryskin and V. N. Titov, Radiophys. Quantum Electron., 44, No. 10, 793 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 6, pp. 471–484, June 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitrieva, T.V., Ryskin, N.M. On the theory of self-modulation instability in an FEL amplifier due to stimulated scattering of counterpropagating waves. Radiophys Quantum Electron 50, 429–441 (2007). https://doi.org/10.1007/s11141-007-0040-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-007-0040-x

Keywords

Navigation