Radiophysics and Quantum Electronics

, Volume 50, Issue 6, pp 429–441 | Cite as

On the theory of self-modulation instability in an FEL amplifier due to stimulated scattering of counterpropagating waves

  • T. V. Dmitrieva
  • N. M. Ryskin


We present the results of numerical simulation of the self-modulation processes in an amplifier based on the effect of stimulated scattering of two counterpropagating transverse electromagnetic waves by a relativistic electron beam (FEL amplifier). Two models of the studied system are considered. One model allows for the effects of overbunching of electrons and is based on the modified method of macroparticles. The other is a simplified wave model obtained in the approximation that the amplitude of a combination wave is small if the nonlinearity of the electron-beam processes is negligibly small. The mechanisms of self-modulation are studied. The scenarios of transition to chaos, observed with increase in the input-signal intensity and system length, are examined.


Pump Wave Relativistic Electron Beam Idle Wave Quasiperiodic Motion Pump Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S. Ginzburg, Zh. Tekh. Fiz., 56, No. 5, 938 (1986).Google Scholar
  2. 2.
    N. S. Ginzburg and A. S. Sergeev, Radiotekh. Élektron., 33, No. 3, 580 (1988).ADSGoogle Scholar
  3. 3.
    N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Radiophys. Quantum Electron., 21, No. 7, 728 (1978).CrossRefADSGoogle Scholar
  4. 4.
    D. I. Trubetskov, S. P. Kuznetsov, N. M. Ryskin, and A. E. Khramov, in: A. V. Gaponov-Grekhov and V. I. Nekorkin, eds., Nonlinear Waves 2004 [in Russian], Inst. Appl. Phys., Rus. Acad. Sci., Nizhny Novgorod (2005), p. 287.Google Scholar
  5. 5.
    L. Shenggang, in: Proc. IV IEEE Int. Vacuum Electronics Conf., Seoul, Korea, May 28–30, 2003, p. 357.Google Scholar
  6. 6.
    P. A. Sprangle and R. A. Smith, Phys. Rev. A, 21, No. 1, 293 (1980).CrossRefADSGoogle Scholar
  7. 7.
    B. G. Danly, G. Beke., R. C. Davidson, et al., IEEE J. Quantum Electron., 23, No. 1, 103 (1987).CrossRefADSGoogle Scholar
  8. 8.
    A. W. Fliflet, W. M. Manheimer, and R. Fischer, IEEE Trans. Plasma Sci., 22, No. 5, 638 (1994).CrossRefGoogle Scholar
  9. 9.
    A. W. Fliflet, W. M. Manheimer, and P. A. Sprangle, IEEE J. Quantum Electron., 33, No. 5, 669 (1997).CrossRefGoogle Scholar
  10. 10.
    N. S. Ginzburg, N. I. Zaitsev, E. V. Ilyakov, et al., Tech. Phys., 46, No. 11, 1420 (2001).CrossRefGoogle Scholar
  11. 11.
    N. S. Ginzburg, N. I. Zaitsev, E. V. Ilyakov, et al., Phys. Rev. Lett., 98, No. 10, 108304 (2002).Google Scholar
  12. 12.
    N. S. Ginzburg and M. I. Petelin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 2, No. 6, 3 (1994).Google Scholar
  13. 13.
    N. S. Ginzburg, E. R. Kocharovskaya, and A. S. Sergeev, Tech. Phys., 44, No. 2, 203 (1999).CrossRefGoogle Scholar
  14. 14.
    V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, Sov. Phys. JETP., 49, No. 3, 469 (1979).Google Scholar
  15. 15.
    V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, in: Lectures in Microwave Electronics and Radiophysics (Fifth Winter Workshop for Engineers), Book 1 [in Russian], Saratov State Univ., Saratov (1980), p. 69.Google Scholar
  16. 16.
    M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves [in Russian], Nauka, Moscow (1984).Google Scholar
  17. 17.
    D. I. Trubetskov and A. G. Rozhnev, The Linear Oscillations and Waves [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  18. 18.
    N. S. Ginzburg and A. S. Sergeev, Zh. Tekh. Fiz., 61, No. 6, 133 (1991).Google Scholar
  19. 19.
    V. L. Bratman and A. V. Savilov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 2, No. 6, 27 (1994).Google Scholar
  20. 20.
    A. V. Savilov, V. L. Bratman, G. G. Denisov, et al., Phys. Plasmas, 8, No. 2, 638 (2001).CrossRefADSGoogle Scholar
  21. 21.
    S. P. Kuznetsov, Radiophys. Quantum Electron., 25, No. 12, 996 (1992).CrossRefADSGoogle Scholar
  22. 22.
    B. A. Al’terkop, A. S. Volokitin, V. D. Shapiro, and V. I. Shevchenko, JETP Lett., 18, No. 1, 24 (1973).ADSGoogle Scholar
  23. 23.
    M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in Plasmas [in Russian], Nauka, Moscow (1990).Google Scholar
  24. 24.
    V. N. Shevchik and D. I. Trubetskov, Analytical Methods of Calculation in Microwave Electronics [in Russian], Sovetskoe Radio, Moscow (1970).Google Scholar
  25. 25.
    Yu. P. Bliokh, A. V. Borodkin, M. G. Lyubarsky, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 1, Nos. 1–2, 34 (1993).Google Scholar
  26. 26.
    T. M. Antonsen and B. Levush, Phys. Fluids B, 1, No. 5, 1097 (1989).CrossRefADSGoogle Scholar
  27. 27.
    N. M. Ryskin and A. M. Shigaev, Tech. Phys., 51, No. 1, 68 (2006).CrossRefGoogle Scholar
  28. 28.
    T. V. Dmitrieva and N. M. Ryskin, J. Exp. Theor. Phys., 93, No. 6, 1314 (2001).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    N. M. Ryskin, Radiophys. Quantum Electron., 47, No. 2, 116 (2004).CrossRefADSGoogle Scholar
  30. 30.
    N. M. Ryskin and V. N. Titov, Radiophys. Quantum Electron., 44, No. 10, 793 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • T. V. Dmitrieva
    • 1
  • N. M. Ryskin
    • 1
  1. 1.N. G. Chernyshevsky State University of SaratovSaratovRussia

Personalised recommendations