Advertisement

Radiophysics and Quantum Electronics

, Volume 50, Issue 4, pp 287–298 | Cite as

Radiated power of oscillators traveling in a moving medium

  • É. G. Doil’nitsina
  • A. V. Tyukhtin
Article
  • 20 Downloads

Abstract

We consider the radiation from oscillating electric and magnetic dipoles moving with constant velocity directed parallel or antiparallel to the velocity of the surrounding medium. It is assumed that the medium in its rest frame is isotropic and has no spatial dispersion. We obtain expressions for the spectral density of the radiated power. In the case of a nondispersive medium, algebraic expressions for the total radiated power in the regime of “subluminal relative motion” are also obtained. In particular, it is shown that the energy loss of a source is negative if it moves in the direction of the superluminal motion of the medium and the source velocity is somewhat smaller than the medium velocity. It is noted that this phenomenon takes place for a smaller difference between the velocities of the source and the medium compared with a similar phenomenon for nonoscillating sources.

Keywords

Spectral Density Magnetic Dipole Spatial Dispersion Moving Medium Inhomogeneous Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Frank, Izv. Akad. Nauk SSSR, 6, Nos. 1–2, 3 (1942).Google Scholar
  2. 2.
    V. L. Ginzburg and I. M. Frank, Izv. Akad. Nauk SSSR, 56, No. 7, 699 (1947).Google Scholar
  3. 3.
    I. M. Frank, Vavilov-Čerenkov Radiation [in Russian], Nauka, Moscow (1988).Google Scholar
  4. 4.
    A. V. Tyukhtin, Tech. Phys., 49, No. 8, 1021 (2004).CrossRefGoogle Scholar
  5. 5.
    A. V. Tyukhtin, Tech. Phys., 50, No. 8, 1084 (2005).CrossRefGoogle Scholar
  6. 6.
    P. Daly, K. S. H. Le, and C. H. Papas, IEEE Trans. Antennas Propagat., AP-13, No. 4, 583 (1965).CrossRefGoogle Scholar
  7. 7.
    B. M. Bolotovskii and S. N. Stolyarov, in: Einstein Compendium, 1978–1979 [in Russian], Nauka, Moscow (1983), p. 173.Google Scholar
  8. 8.
    É. G. Doil’nitsina, Yu. B. Zhuravlev, and A. V. Tyukhtin, Vestn. St. Petersburg Univ., Ser. 4: Fiz., Khim., Pt. 4, No. 28, 44 (2001).Google Scholar
  9. 9.
    É. G. Doil’nitsyna and A. V. Tyukhtin, Radiophys. Quantum Electron., 46, No. 1, 20 (2003).CrossRefADSGoogle Scholar
  10. 10.
    É. G. Doil’nitsyna and A. V. Tyukhtin, Radiophys. Quantum Electron., 47, No. 4, 268 (2004).CrossRefADSGoogle Scholar
  11. 11.
    É. G. Doil’nitsina and A. V. Tyukhtin, Radiophys. Quantum Electron., 49, No. 6, 453 (2006).CrossRefADSGoogle Scholar
  12. 12.
    G. M. Garibyan and F. A. Kostanyan, Radiophys. Quantum Electron., 14, No. 12, 1454 (1971).CrossRefADSGoogle Scholar
  13. 13.
    V. A. Ugarov, Special Theory of Relativity [in Russian], Nauka, Moscow (1977).Google Scholar
  14. 14.
    B. M. Bolotovskii and S. N. Stolyarov, in: Einstein Compendium, 1974 [in Russian], Nauka, Moscow (1976), p. 179.Google Scholar
  15. 15.
    B. M. Bolotovskii and S. N. Stolyarov, in: Problems of Theoretical Physics. Collection of Papers Dedicated to the Memory of I. E. Tamm [in Russian], Nauka, Moscow (1972), p. 267.Google Scholar
  16. 16.
    A. V. Tyukhtin, Electromagnetic Radiation from a Charged Particle Moving in an Isotropic Medium [in Russian], St. Petersburg Univ. Press, St. Petersburg (2004).Google Scholar
  17. 17.
    A. V. Tyukhtin, Electromagnetic Waves in a Moving Nondispersive Medium [in Russian], St. Petersburg Univ. Press, St. Petersburg (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Research Institute of Radiophysics of the St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations