Radiophysics and Quantum Electronics

, Volume 50, Issue 3, pp 195–208 | Cite as

Rayleigh wave at the boundary of an inhomogeneous nonlinear viscoelastic half-space

  • A. V. Sokolov


In the approximation of weak nonlinearity and weak viscosity of the medium, we obtain an equation describing the spectral density of the particle horizontal velocity for a Rayleigh wave propagating along the boundary of a half-space. The coefficients of nonlinear interaction between the wave harmonics are found on the assumption that the third-order elastic moduli arbitrarily depend on the depth. We find expressions for the complex correction to the wave frequency due to small relaxation corrections to the elastic moduli and small variations in the medium density, which arbitrarily depend on the depth as well. The imaginary part of this correction to the frequency determines the decay of the linear Rayleigh wave due to small relaxation corrections to the elastic moduli arbitrarily dependent on the depth. Using numerical simulation (with allowance for the interaction of 500 harmonics), we study distortions of an initially harmonic Rayleigh wave for a particular dependence of variations in the nonlinear moduli on the depth. An integral equation is derived for the nonlinear elastic moduli as functions of the depth. It is shown that for independent spatio-temporal distributions of the viscous moduli, functions determining the dependence of the viscosity on the depth are described by an analogous integral equation.


Surface Wave Rayleigh Wave Wave Spectrum Nonlinear Distortion Relaxation Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, Oxford (1959).Google Scholar
  2. 2.
    I. A. Victorov, Rayleigh and Lamb Waves, Plenum Press, New York (1967).Google Scholar
  3. 3.
    V. P. Reutov, Radiophys. Quantum Electron., 16, No. 11, 1307 (1973).CrossRefADSGoogle Scholar
  4. 4.
    P. J. Vella, T. C. Padmore, and G. I. Stegaman, J. Appl. Phys., 45, No. 5, 1993 (1974).CrossRefADSGoogle Scholar
  5. 5.
    E. A. Zabolotska, J. Acoust. Soc. Am., 91, No. 5, 2569 (1992).CrossRefADSGoogle Scholar
  6. 6.
    N. Kalyanasundaram, Int. J. Engin. Sci., 19, 279 (1981).zbMATHCrossRefGoogle Scholar
  7. 7.
    N. Kalyanasundaram, Int. J. Engin. Sci., 19, 435 (1981).CrossRefGoogle Scholar
  8. 8.
    N. Kalyanasundaram, R. Ravindram, and P. Prasad, J. Acoust. Soc. Am., 72, 488 (1982).zbMATHCrossRefADSGoogle Scholar
  9. 9.
    R. W. Lardner, Int. J. Engin. Sci., 21, 1331 (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    R. W. Lardner, Appl. Phys., 55, 3251 (1984).CrossRefGoogle Scholar
  11. 11.
    D. F. Parker and F. M. Talbot, J. Elast., 15, 389 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    D. F. Parker, Int. J. Engin. Sci., 26, No. 1, 59 (1988).zbMATHCrossRefGoogle Scholar
  13. 13.
    A. M. Ionov, Akust. Zh.., 40, No. 2, 262 (1994).Google Scholar
  14. 14.
    A. P. Mayer Phys. Rep., 256, 237 (1995).CrossRefADSGoogle Scholar
  15. 15.
    A. V. Sokolov, “Evolution equation for the Rayleigh wave at the boundary of a homogeneous half-space,” Preprint No. 225 [in Russian], Radiophys. Res. Inst, Gorky (1987).Google Scholar
  16. 16.
    A. V. Sokolov, “Integro-differential equation descrinbing a weakly nonlinar Rayleigh wave,” Preprint No. 349 [in Russian], Radiophys. Res. Inst, Nizhny Novgorod (1993).Google Scholar
  17. 17.
    A. V. Sokolov, “Nonlinear Rayleigh wave at the boundary of a uniform viscoelastic half-space,” Preprint No. 387 [in Russian], Inst. Appl. Phys. RAS, Nizhny Novgorod (1995).Google Scholar
  18. 18.
    V. V. Petrov, “Interaction of volume and surface waves in nonlinear media,” Cand. Sci. (Phys.-Math.) Thesis [in Russian], Gorky State Univ., Gorky (1979).Google Scholar
  19. 19.
    A. A. Novikov and A. G. Sazontov, in: Trans. Marine Hydrophys. Inst., Ukrain. Acad. Sci., [in Russian], Sevastopol, (1981).Google Scholar
  20. 20.
    A. V. Sokolov, “Surface Rayleigh wave at the boundary of a layered nonlinear half-space,” Preprint No. 449 [in Russian], Inst. Appl. Phys., Nizhny Novgorod (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. V. Sokolov
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations