Radiophysics and Quantum Electronics

, Volume 50, Issue 2, pp 108–122 | Cite as

Influence of an external magnetic field on the threshold of multipactor onset on a dielectric surface

  • N. K. Vdovicheva
  • A. G. Sazontov
  • V. A. Sazontov


In this paper, we propose a theoretical model of the initial stage of development of a one-sided secondary-emission (multipactor) discharge on a dielectric surface. Consideration is based on a statistical method supported by an exact analytical solution for the transit-time distribution function of secondary electrons. The general integral equation allowing us to determine the stationary emission-phase distribution functions and the threshold of multiplicator onset in the presence of an external magnetic field is formulated. It is shown that the presence of an external magnetic field can significantly change the conditions of multipactor onset. It is found that the discharge-zone boundaries calculated within the framework of a statistical model are in qualitative agreement with the results obtained by the Monte-Carlo method.


Transit Time Cyclotron Frequency Parameter Plane Discharge Zone Dielectric Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Yamaguchi, Y. Saito, S. Anami, and S. Michizon, IEEE Trans. Nucl. Sci., 39, No. 2, 278 (1992).CrossRefGoogle Scholar
  2. 2.
    A. Neuber, D. Hemmert, H. Krompholz, et al., J. Appl. Phys., 86, No. 3, 1724 (1999).CrossRefADSGoogle Scholar
  3. 3.
    R. B. Anderson, W. D. Getty, M. L. Brake, et al., Rev. Sci. Instrum., 72, No. 7, 3095 (2001).CrossRefADSGoogle Scholar
  4. 4.
    J. G. Power, W. Gai, S. H. Gold, et al., Phys. Rev. Lett., 92, No. 16, 164801 (2004).Google Scholar
  5. 5.
    R. A. Kishek, Y. Y. Lau, L. K. Ang et al., Phys. Plasmas, 5, No. 5, 2120 (1998).CrossRefADSGoogle Scholar
  6. 6.
    R. A. Kishek and Y. Y. Lau, Phys. Rev. Lett., 80, No. 1, 193 (1998).CrossRefADSGoogle Scholar
  7. 7.
    L. K. Ang, Y. Y. Lau, R. A. Kishek, and R. M. Gilgenbach, IEEE Trans. Plasma Sci., 26, No. 3, 290 (1998).CrossRefGoogle Scholar
  8. 8.
    A. Valfells, J. P. Verboncoeur, and Y. Y. Lau, IEEE Trans. Plasma Sci., 28, No. 3, 529 (2000).CrossRefGoogle Scholar
  9. 9.
    A. Valfells, L. K. Ang, Y. Y. Lau, and R. M. Gilgenbach, Phys. Plasmas, 7, No. 7, 750 (2000).CrossRefADSGoogle Scholar
  10. 10.
    A. Sazontov, V. Semenov, M. Buyanova, N. Vdovicheva, et al., Phys. Plasmas, 9, No. 9, 093501 (2005).Google Scholar
  11. 11.
    J. R. M. Vaughan, IEEE Trans. Electron. Dev., 36, No. 9, 1963 (1989).CrossRefADSGoogle Scholar
  12. 12.
    N. K. Vdovicheva, A. G. Sazontov, and V. E. Semenov, Radiophys. Quantum Electron., 47, No. 8, 580 (2004).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. K. Vdovicheva
    • 1
  • A. G. Sazontov
    • 1
  • V. A. Sazontov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations