Advertisement

Radiophysics and Quantum Electronics

, Volume 49, Issue 10, pp 754–759 | Cite as

Generation of high-power nanosecond pulses in a relativistic backward-wave oscillator in the regime of spatial accumulation of energy

  • K. V. Afanasyev
  • N. M. Bykov
  • V. P. Gubanov
  • A. A. Elchaninov
  • A. I. Klimov
  • S. D. Korovin
  • V. V. Rostov
  • A. S. Stepchenko
Article

Abstract

We study the generation of electromagnetic pulses with a carrier frequency of 3.7 GHz in a relativistic backward-wave oscillator with a long slow-wave system in the superradiance regime of super-radiation for a magnetic induction of 0.2 T (below the cyclotron resonance). To decrease transverse velocities of the electrons, we use decompression of a hollow electron beam. Decompression in combination with a sharp leading edge of the high-voltage pulse (460 kV) applied to the explosive-emission cathode are used for increasing the cathode lifetime and improving the azimuthal uniformity of the beam. As a result, the achieved peak power of the microwave radiation amounts to 800 MW for a pulse duration of 2.5 ns and a repetition rate of 100 Hz. The uninterrupted operation in such a regime determined by the lifetime of the explosive-emission cathode is increased up to 105–106 pulses. The efficiency of conversion of the electron-beam power into the electromagnetic-wave power is increased up to 50%, The possibility of locking the electromagnetic oscillations phase by a sharp edge of the high-voltage pulse at the cathode was observed for the first time in such a relativistic generator.

Keywords

Microwave Pulse Coupling Impedance Sharp Leading Edge Output Microwave Power Drift Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Radiophys. Quantum Electron., 21, No. 7, 728 (1978).CrossRefADSGoogle Scholar
  2. 2.
    A. A. Elchaninov, S. D. Korovin, V. V. Rostov, et al., JETP Lett., 77, No. 6, 266 (2003).CrossRefADSGoogle Scholar
  3. 3.
    A. A. Eltchaninov, S. D. Korovin, G. A. Mesyats, et al., IEEE Trans. Plasma Sci., 32, No. 3, 1093 (2004).CrossRefGoogle Scholar
  4. 4.
    A. A. Eltchaninov, S. D. Korovin, I. V. Pegel, et al., Radiophys. Quantum Electron., 46, No. 10, 782 (2003).CrossRefADSGoogle Scholar
  5. 5.
    S. D. Korovin, S. K. Lyubutin, E. A. Litvinov, et al., Techn. Phys. Lett., 31, No. 6, 488 (2005).CrossRefGoogle Scholar
  6. 6.
    I. K. Kurkan, V. V. Rostov, and E. M. To’meninov, Techn. Phys. Lett., 24, No. 5, 388 (1998).CrossRefADSGoogle Scholar
  7. 7.
    Yu. A. Vvedenskii, A. V. Andrianov, and É. A. Ermilov, Prib. Tekh. Éksp., No. 1, 114 (1975).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • K. V. Afanasyev
    • 1
  • N. M. Bykov
    • 1
  • V. P. Gubanov
    • 1
  • A. A. Elchaninov
    • 1
  • A. I. Klimov
    • 1
  • S. D. Korovin
    • 1
  • V. V. Rostov
    • 1
  • A. S. Stepchenko
    • 1
  1. 1.Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations