Advertisement

Radiophysics and Quantum Electronics

, Volume 49, Issue 7, pp 535–539 | Cite as

Using the method of modified linear prediction for robust acoustic coding of speech

  • A. V. Gerasimov
  • O. A. Morozov
  • E. A. Soldatov
  • V. R. Fidelman
Article

Abstract

Ensuring the acceptable acoustic coding of a signal under the conditions of noise interference is an important problem of recognizing speech signals. The result of calculating acoustic characteristics by the existing algorithms strongly depends on the signal-to-noise ratio. To solve the problem related to ensuring robust acoustic coding, we propose an algorithm for obtaining cepstral coefficients on the basis of the method of modified linear prediction. The algorithm is aimed at the specific features of the vocalized speech signals with a pronounced formant structure including the case of wideband additive interference. The algorithm stability as a function of the noise level is studied experimentally. The result is improved compared with the well-known approaches.

Keywords

Speech Signal Acoustic Attribute Linear Prediction Autocorrelation Matrix Vocalize Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Fant, Acoustic Theory of Speech Production, Mouton, The Hague (1960).Google Scholar
  2. 2.
    S. A. Mineev, O. A. Morozov, A. A. Plekhanov, and E. A. Soldatov, Radiophys. Quantum Electron., 42, No. 1, 61 (2000).ADSGoogle Scholar
  3. 3.
    S. M. Kay and S. L. Marple, Jr., Proc. IEEE, 69, No. 11, 1380 (1981).Google Scholar
  4. 4.
    B. S. Atal, J. Acoust. Soc. Am., 55, No. 6, 1304 (1974).CrossRefADSGoogle Scholar
  5. 5.
    D. G. Childers, D. P. Skinner, and R. C. Kemmerait, Proc IEEE, 65, No. 10, 1428 (1977).CrossRefGoogle Scholar
  6. 6.
    V. F. Pisarenko, Geophys. J. Roy. Astron. Soc., 33, 347 (1973).MATHADSGoogle Scholar
  7. 7.
    N. Levinson, J. Math. Phys., 25, 261 (1947).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. V. Gerasimov
    • 1
  • O. A. Morozov
    • 1
  • E. A. Soldatov
    • 1
  • V. R. Fidelman
    • 1
  1. 1.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations