Radiophysics and Quantum Electronics

, Volume 49, Issue 6, pp 432–441 | Cite as

Account of frequency dependence of the acoustic absorption coefficient in solving problems of acoustic-brightness thermometry

  • E. V. Krotov
  • A. M. Reyman
  • P. V. Subochev


We perform a comparative analysis of the estimate bias in measuring the internal thermodynamic temperature and time of thermal destruction of biological tissue using the acoustothermometry method based on the model of recording of thermoacoustic radiation from a temperature-inhomogeneous medium with allowance for frequency dependence of the acoustic absorption coefficient. An expression for acoustic-brightness temperature is obtained in the case of reception of radiation by a broadband acoustothermograph. The possibilities of using the described method for determining the thermal destruction threshold of biological tissue under hyperthermia are studied. The parameter range in which frequency dependence of the acoustic absorption coefficient can be neglected is found.


Acoustic Radiation Estimate Bias Thermal Destruction Thermodynamic Temperature Temperature Inhomogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Babiy, Marine Hydrophysical Studies, No. 2 (65), 189 (1974).Google Scholar
  2. 2.
    Yu.V. Gulyaev, É. É. Godik, V. V. Dementienko, et al., Dokl. Akad. Nauk SSSR, 283, No. 6, 1495 (1985).Google Scholar
  3. 3.
    V. I. Pasechnik, Akust. Zh., 36, No. 4, 718 (1990).MathSciNetGoogle Scholar
  4. 4.
    Yu. V. Gulyaev, K. M. Bograchev, I. P. Borovikov, et al., Radiotekh. Élektron., 43, No. 9, 1140 (1998).Google Scholar
  5. 5.
    V. A. Burov and E. E. Kasatkina, Akust. Zh., 43, No. 2, 135 (1997).Google Scholar
  6. 6.
    E. V. Krotov, S.Yu. Ksenofontov, A. D. Mansfeld, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz., 42, No. 5, 479 (1999).Google Scholar
  7. 7.
    E. V. Krotov, M. V. Zhadobov, A. M. Reyman, et al., Appl. Phys. Lett., 81, No. 21, 3918 (2002).CrossRefADSGoogle Scholar
  8. 8.
    E. V. Krotov, A. D. Mansfeld, and A. M. Reyman, in: Methods of Acoustic Diagnostics of Inhomogeneous Media (collected papers) [in Russian], Inst. Appl. Phys. RAS, Nizhny Novgorod (2002), p. 235.Google Scholar
  9. 9.
    E. V. Krotov, A. D. Mansfeld, A. M. Reyman, and V. A. Vilkov, in: Acoustics of Inhomogeneous Media: Annual of the Russian Acoustic Society. Proceedings of Prof. S. A.Rybak’s scientific school [in Russian], Trovant, Troitsk (2003), p. 122.Google Scholar
  10. 10.
    V. A. Vilkov, E. V. Krotov, A. D. Mansfeld, and A. M. Reyman, Akust. Zh., 50, No. 5, 592 (2004).Google Scholar
  11. 11.
    C. R. Hill, ed., Physical Principles of Medical Ultrasonics, John Wiley & Sons, New York (1986).Google Scholar
  12. 12.
    R. A. Kruger, W. L. Kiser, A. R. Romilly, and P. Scmidt, Proc. SPIE, 4256, 1 (2001).ADSGoogle Scholar
  13. 13.
    M. R. Baily, V. A. Khokhlova, O. A. Sapozhnikov, et al., Akust. Zh., 49, No. 4, 447 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. V. Krotov
    • 1
  • A. M. Reyman
    • 1
  • P. V. Subochev
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations