Radiophysics and Quantum Electronics

, Volume 49, Issue 1, pp 47–57 | Cite as

Determining the sea-roughness spectra from an optical image of the sea surface

  • V. V. Bakhanov
  • É. M. Zuikova
  • O. N. Kemarskaya
  • V. I. Titov


An optical model of sea-surface imaging based on a two-scale presentation of sea roughness is developed. Using this model, an exact expression for the sea-surface image spectrum in diffuse sky light is obtained, which made it possible to estimate the nonlinear contribution of waves of different scales to the image spectrum. In particular, it is shown that the image spectrum is proportional to the wave tilt spectrum and the coefficient before the tilt spectrum is determined by the modulation of the short-wave contrast by long waves. Accuracy of determination of spectral contrasts of waves in surface-roughness anomalies (film slicks, internal-wave field, etc.) and accuracy of measurement of two-dimensional wave spectra from the sea-surface image spectrum are estimated. Examples of sea-roughness variability in the internal-wave field and examples of two-dimensional sea-roughness spectra are presented. All data were obtained by the optical method under full-scale conditions.


Quantum Electronics Optical Image Optical Method Optical Model Wave Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Dugan, J. Fetzer, J. Bowden, et al., J. Atmos. Oceanic Techn., 18, 1267 (2001).CrossRefADSGoogle Scholar
  2. 2.
    J. P. Dugan, C. C. Piotrovski, and J. Z. Williams, J. Geophys. Res. C, 106, No. 8, 16903 (2001).Google Scholar
  3. 3.
    R. D. Chapman and G. B. Irani, Appl. Opt., 20, No. 20, 3645 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    I. A. Ewing, J. Marine Res., 27, No. 2, 163 (1969).Google Scholar
  5. 5.
    R. S. Kasevich, J. Geophys. Res., 80, No. 33, 4535 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    F. M. Monaldo and R. S. Kasevich, J. Phys. Oceanography, 11, No. 2, 272 (1981).CrossRefADSGoogle Scholar
  7. 7.
    D. Stilwell and R. O. Pilon, J. Geophys. Res., 79, No. 9, 1277 (1974).CrossRefADSGoogle Scholar
  8. 8.
    É. M. Zuikova, A. G. Luchinin, and V. I. Titov, Remote Radiophysical Methods of Ocean Studies [in Russian], Inst. Appl. Phys. Acad. Sci. USSR, Gorky (1987), p. 59.Google Scholar
  9. 9.
    V. V. Bakhanov, D. M. Bravo-Zhivotovsky, E. I. Dorfman, et al., Black Sea ’92 Proceedings, Varna, Bulgaria (1992), p. 24.Google Scholar
  10. 10.
    É. M. Zuikova, A. G. Luchinin, and V. I. Titov, Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. Okeana, 21, No. 10, 1095 (1985).Google Scholar
  11. 11.
    V. V. Bakhanov, D. M. Bravo-Zhivotovsky, É. M. Zuikova, et al., Manifestation of Dea-Sea Processes on the Sea Surface [in Russian], Inst. Appl. Phys. Rus. Acad. Sci., Nizhny Novgorod (2004), p. 102.Google Scholar
  12. 12.
    V. I. Titov, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 18, No. 2, 215 (1982).Google Scholar
  13. 13.
    O. M. Phillips, The Dynamics of the Upper Ocean, Cambridge Univ. Press (1977).Google Scholar
  14. 14.
    J. Wu, Phys. Fluids, 15, No. 5, 741 (1972).CrossRefADSGoogle Scholar
  15. 15.
    G. Sh. Lifshits, Daytime Diffuse Sky Light [in Russian], Nauka, Alma-Ata (1973).Google Scholar
  16. 16.
    R. G. Hopkinson, J. Opt. Soc. Am., 44, No. 6, 455 (1954).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. V. Bakhanov
    • 1
  • É. M. Zuikova
    • 1
  • O. N. Kemarskaya
    • 1
  • V. I. Titov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations