Advertisement

Radiophysics and Quantum Electronics

, Volume 48, Issue 6, pp 435–446 | Cite as

Kinetic Instability of Charged-Particle Flow in a Thunderstorm Cloud

  • V. S. Grach
  • A. G. Demekhov
  • V. Yu. Trakhtengerts
Article

Abstract

We consider the linear stage of an instability of charged-particle flow in a thunderstorm cloud. A dispersion relation characterizing the temporal evolution of a spectral component of the quasistatic electric field is obtained with account of the size spread of large particles. This dispersion relation is studied for the cases of a monodispersed particle ensemble and a model distribution function. The dependences of the instability parameters on the large-particle size spread and the air-flow conductivity are obtained.

Keywords

Distribution Function Large Particle Dispersion Relation Temporal Evolution Quantum Electronics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. Yu. Trakhtengerts, Doklady Akad. Nauk SSSR, 308, No.3, 584 (1989).Google Scholar
  2. 2.
    E. A. Mareev, A. E. Sorokin, and V. Yu. Trakhtengerts, Plasma Phys. Rep., 25, No.3, 261 (1999).Google Scholar
  3. 3.
    N. S. Shishkin, Clouds, Precipitation, and Thunderstorm Electricity [in Russian], Gidrometeoizdat, Leningrad (1964).Google Scholar
  4. 4.
    J. A. Chalmers, Atmospheric Electricity, Pergamon Press, London (1967).Google Scholar
  5. 5.
    I. M. Imyanitov, E. V. Chubarina, and Ya. M. Shvarts, Electricity of Clouds [in Russian], Gidrometeoizdat, Leningrad (1971).Google Scholar
  6. 6.
    R. R. Rogers, A Short Course in Cloud Physics, Pergamon Press, Oxford (1979).Google Scholar
  7. 7.
    D. I. Iudin and V. Yu. Trakhtengerts, Radiophys. Quantum Electron., 44, Nos. 5–6, 386 (2001).CrossRefGoogle Scholar
  8. 8.
    D. I. Iudin and V. Yu. Trakhtengerts, Izvestiya, Atmos. Oceanic Phys., 36, No.5, 597 (2000).Google Scholar
  9. 9.
    M. A. Uman, The Lightning Discharge, Academic, San-Diego (1987).Google Scholar
  10. 10.
    D. R. Macgorman and W. D. Rust, The Electrical Nature of Storms, Oxford Univ. Press, Oxford (1998).Google Scholar
  11. 11.
    T. C. Marshall and W. D. Rust, J. Geophys. Res., 96, No.12, 22297 (1991).Google Scholar
  12. 12.
    G. Labaune, P. Richard, and A. Bondiou, in: R. L. Gardner, ed., Lightning Electromagnetics, Hemisphere Publishing Corporation, New York (1990), p. 285.Google Scholar
  13. 13.
    V. N. Tsytovich, Sov. Phys.-Uspekhi, 167, No.1, 53 (1997).CrossRefGoogle Scholar
  14. 14.
    M. Rosenberg and P. K. Shukla, J. Geophys. Res. A, 107, No.12, 1492, doi:10.1029/2002JA009539 (2002).CrossRefGoogle Scholar
  15. 15.
    V. Yu. Trakhtengerts and A. G. Demekhov, J. Atm. Terr. Phys., 57, No.10, 1153 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. S. Grach
    • 1
  • A. G. Demekhov
    • 1
  • V. Yu. Trakhtengerts
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations