Radiophysics and Quantum Electronics

, Volume 48, Issue 5, pp 364–370 | Cite as

On the Use of the Perturbation Technique for the Kinetic Analysis of Nonlinear Problems of Plasma Electrodynamics

  • M. D. Tokman
  • A. Yu. Kryachko


We discuss the validity of the perturbation technique (i.e., power-series expansion in terms of the high-frequency field amplitude) applied for solving the kinetic equation. The case where the validity conditions of this method are formally violated for a “strongly localized” distribution function is considered. It is shown that in this case, the asymptotic expressions for the distribution-function moments remain correct not only in the linear, but also in quadratic approximation with respect to the field.


Distribution Function Kinetic Equation Quantum Electronics Kinetic Analysis Nonlinear Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics, Pergamon Press, Oxford, (1975).Google Scholar
  2. 2.
    N. S. Ginzburg, Zh. Tekh. Fiz, 56, 1433 (1986).Google Scholar
  3. 3.
    V. V. Zheleznyakov, Izv. Vyssh. Uchebn. Zaved., Radiofiz, 3, 57 (1960).Google Scholar
  4. 4.
    V. P. Silin, Parametric Effect of Intense Radiation on a Plasma [in Russian], Nauka, Moscow, (1973).Google Scholar
  5. 5.
    A. V. Gaponov-Grekhov and M. D. Tokman, JETP, 85, No.4, 640 (1997).CrossRefGoogle Scholar
  6. 6.
    M. A. Erukhimova and M. D. Tokman, JETP, 91, No.2, 255 (2000).CrossRefGoogle Scholar
  7. 7.
    A. V. Timofeev, in: B. B. Kadomtsev, ed., Reviews of Plasma Phys., Vol. 14, Consultants Bureau, New York (1986), p. 63.Google Scholar
  8. 8.
    S. E. Harris, Phys. Today, 50, 36 (1997).Google Scholar
  9. 9.
    A. G. Litvak and M. D. Tokman, Radiophys. Quantum Electron., 44, 375 (2001).CrossRefGoogle Scholar
  10. 10.
    A. G. Litvak and M. D. Tokman, Phys. Rev. Lett., 88, Article No. 095003 (2002).Google Scholar
  11. 11.
    G. Shvets and J. S. Wurtele, Phys. Rev. Lett., 89, Article No. 115003 (2002).Google Scholar
  12. 12.
    A. Yu. Kryachko, A. G. Litvak, and M. D. Tokman, JETP, 95, No.4, 697 (2002).CrossRefGoogle Scholar
  13. 13.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon Press, Oxford (1981).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. D. Tokman
    • 1
  • A. Yu. Kryachko
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations