Radiophysics and Quantum Electronics

, Volume 48, Issue 3, pp 203–211 | Cite as

Model of a Neuron with Afterdepolarization and Short-Term Memory

  • V. V. Klin’shov
  • V. I. Nekorkin


In this paper, we propose a model describing the dynamics of a neuron capable of storing the so-called short-term memory. From the dynamical viewpoint, the effect of short-term memory means that the neuron “ remembers” the fact of its short-pulse excitation and the action potential is periodically generated for a long time after it. This mechanism of memory storage is realized due to the property of afterdepolarization included in the model. This property is well known in real (live)neurons of cortex and hippocampus.


Quantum Electronics Nonlinear Optic Memory Storage Dynamical Viewpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Haken and M. Haken-Krelle, Erfolgsgeheimnisse der Wahrnehmung (Secrets of Successful Perception), DVA, Stuttgart (1992).Google Scholar
  2. 2.
    J. E. Lisman and M. A. P. Idiart, Science, 267, 1512 (1995).PubMedGoogle Scholar
  3. 3.
    D. O. Hebb, The Organization of Behavior, Wiley, New York (1949).Google Scholar
  4. 4.
    O. L. White, D. D. Lee, and H. Sompolinsky, Phys. Rev. Lett., 92, No.14, 148102 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    X.-J. Wang, TRENDS in Neuroscience, 24, No.8, 455 (2001).CrossRefGoogle Scholar
  6. 6.
    R. FitzHugh, Biophys. J., 1, 445 (1961).Google Scholar
  7. 7.
    J. S. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRF, 50, 2061 (1962).Google Scholar
  8. 8.
    A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillations, Pergamon, Oxford (1966).Google Scholar
  9. 9.
    E. F. Mishchenko and N. Kh. Rozov, Differential Equations with a Small Parameter and the Relaxation Oscillations [in Russian], Nauka, Moscow (1975).Google Scholar
  10. 10.
    V. I. Arnold, V. S. Afraimovich, Yu. S. Il’yashchenko, and L. P. Shil’nikov, Modern Problems in Mathematics. The Fundamental Trends [in Russian], VINITI Akad. Nauk USSR, Moscow (1986), No. 5, p. 165.Google Scholar
  11. 11.
    J. G. Nicholls, A. R. Martin, B. G. Wallace, and P. A. Fuchs, From Neuron to Brain, Sinauer Accociates, Sunderland, MA (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. V. Klin’shov
    • 1
  • V. I. Nekorkin
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations