Radiophysics and Quantum Electronics

, Volume 47, Issue 10–11, pp 882–889 | Cite as

Influence of radiation coherence on the effects of polarization nonreciprocity of fiber ring interferometers

  • I. A. Andronova


In this paper, we consider the effects of polarization nonreciprocity taking into account coherence or partial coherence of radiation at the output of a fiber ring interferometer (FRI) and discuss the possibility of occurrence of additional effects of polarization nonreciprocity at the output of an FRI with a broadband radiation source due to the coherent component of radiation resulting from the coupling of orthogonal modes at the output segments of the fiber. Allowing for the coherence, we estimate the temperature instability of the interferometer signal related to the polarization nonreciprocity.

The features of the polarization nonreciprocity effects for a fiber ring interferometer with polarizer or dichroism are considered. It is shown that if the conditions of conventional reciprocity theorem (no rotation) are satisfied for the interferometer, then the polarization nonreciprocity effects become hidden and cannot be detected in the interference signal without a priori information on the character of birefringence and on the orientation of anisotropic elements of the fiber loop of the interferometer and polarizer.


Coherence Quantum Electronics Nonlinear Optic Interference Signal Temperature Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford (1970).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1984).Google Scholar
  3. 3.
    R. Ulrich and M. Johnson, Opt. Lett., 4, No.5, 152 (1979).Google Scholar
  4. 4.
    G. Schiffner, W. K. Leeb, H. Krammer, and J. Wittmann, J. Appl. Opt., 18, No.13, 2096 (1979).Google Scholar
  5. 5.
    E. Kintner, Opt. Lett., 6, No.3, 154 (1981).Google Scholar
  6. 6.
    S. Ezekiel, in: Fiber-Optic Rotation Sensors, Springer-Verlag, Berlin (1982), p. 2.Google Scholar
  7. 7.
    R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Techn., 2, No.2, 91 (1984).Google Scholar
  8. 8.
    S. M. Kozel, Yu. I. Kolesov, V. N. Listvin, and S. V. Shatalin, Opt. Spectrosc., 59, No.1, 106 (1985).Google Scholar
  9. 9.
    S. L. Galkin and R. M. Kozhevnikov, Opt. Spectrosc., 62, No.1, 103 (1987).Google Scholar
  10. 10.
    S. M. Kozel, V. N. Listvin, S. V. Shatalin, and R. V. Yushkaitis, Opt. Spectrosc., 61, No.6, 814 (1986).Google Scholar
  11. 11.
    G. B. Malykin, Radiophys. Quantum Electron., 34, No.7, 667 (1991).Google Scholar
  12. 12.
    I. A. Andronova, G. V. Gelikonov, and G. B. Malykin, Quantum Electron., 26, No.3, 271 (1999).Google Scholar
  13. 13.
    I. A. Andronova, V. M. Gelikonov, and G. V. Gelikonov, Quantum Electron., 30, No.2, 115 (2000).Google Scholar
  14. 14.
    V. N. Listvin and V. T. Logozinskii, Radiophys. Quantum Electron., 34, No.9, 791 (1991).Google Scholar
  15. 15.
    É. I. Alekseev and E. N. Bazarov, Sov. J. Quantum Electron., 22, 834 (1992).Google Scholar
  16. 16.
    I. A. Andronova, V. M. Gelikonov, and D. P. Stepanov, Quantum Electron., 24, 805 (1994).Google Scholar
  17. 17.
    A. M. Fadeev, Izv. Vyssh. Uchebn. Zaved., Priborostr., 34, No.8, 69 (1990).Google Scholar
  18. 18.
    A. Ts. Andreev, V. D. Vasilev, V. A. Kozlov, et al., Quantum Electron., 23, No.8, 685 (1993).Google Scholar
  19. 19.
    V. I. Bunimovich, Fluctuation Processes in Radio Receivers, Sovetskoe Radio, Moscow (1951).Google Scholar
  20. 20.
    É. I. Alekseev, E. N. Bazarov, and V. G. Izraelyan, Sov. J. Quantum Electron., 14, 271 (1984).Google Scholar
  21. 21.
    G. B. Malykin and V. I. Pozdnyakova, Opt. Spectrosc., 96, No.2, 240 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • I. A. Andronova
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations