Radiophysics and Quantum Electronics

, Volume 47, Issue 9, pp 662–673 | Cite as

Formation of coherent spatial structures in the reaction-diffusion atmospheric system under the action of a planetary wave

  • M. Yu. Kulikov


On the example of the effect of an atmospheric wave with given amplitude on the density oscillations of minor gas constituents near the mesopause (at heights 80–90 km, we consider the influence of the quasi-resonant periodic spatial transport on a distributed system responding subharmonically to a periodic external action (diurnal sunlight variations). Numerical modeling revealed the formation of a coherent horizontal distribution of the dynamical variables (i.e., the concentrations of small constituents). Application of this effect to the mesopause conditions is discussed.


Numerical Modeling Spatial Structure Quantum Electronics Nonlinear Optic Dynamical Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lotka, A. J. 1920J. Amer. Chem. Soc.421595Google Scholar
  2. 2.
    Belousov, B. P. 1959Referats on Radiation MedicineMedgizMoscow[in Russian]Google Scholar
  3. 3.
    Epstein, I. R., Pojman, J. A. 1999Chaos9255Google Scholar
  4. 4.
    Feigin, A. M., Konovalov, I. B. 1996J. Geophys. Res. D10126023Google Scholar
  5. 5.
    Konovalov, I. B., Feigin, A. M., Mukhina, A. Y. 1999J. Geophys. Res. D1048669Google Scholar
  6. 6.
    Remus, P., Ross, J. 1985Field, R. J.Burger, M. eds. Oscillations and Traveling Waves in Chemical SystemsWileyNew YorkGoogle Scholar
  7. 7.
    Fichtelmann, B., Sonnemann, G. 1992Ann. Geophys.10719Google Scholar
  8. 8.
    Sonnemann, G., Fichtelmann, B. 1997J. Geophys. Res. D1011193Google Scholar
  9. 9.
    Feigin, A. M., Konovalov, I. B., Molkov, Ya. I. 1998J. Geophys. Res. D10325447Google Scholar
  10. 10.
    Konovalov, I. B., Feigin, A. M. 2000Nonlinear Proc. Geophys.787Google Scholar
  11. 11.
    Sonnemann, G., Feigin, A. M. 1999Phys. Rev. E.591719Google Scholar
  12. 12.
    Sonnemann, G., Feigin, A. M., Molkov, Ya. I. 1999J. Geophys. Res. D10430591Google Scholar
  13. 13.
    Sonnemann, G., Feigin, A. M. 1999Adv. Space Res.24557Google Scholar
  14. 14.
    Muller, H. G. 1972Philos. Trans. R. Soc. A271585Google Scholar
  15. 15.
    Thayaparan, T., Hocking, W. K., MacDougall, J. 1997J. Geophys. Res. D1029461Google Scholar
  16. 16.
    Allen, M., Yung, Y. L., Waters, J. W. 1981J. Geophys. Res. D863617Google Scholar
  17. 17. Scholar
  18. 18.
    Brassier, G., Solomon, S. 1984Aeronomy of the Middile AtmosphereD. Reidel Publ. Co.DordrechtGoogle Scholar
  19. 19.
    Lubken, F. J. 1997J. Geophys. Res. D10213441Google Scholar
  20. 20.
    Feigin, A. M. 2002Izvestiya, Atmos. Oceanic Phys.38513Google Scholar
  21. 21.
    Salby, M. L. 1981J. Atmos. Sci.381803Google Scholar
  22. 22.
    Salby, M. L. 1981J. Atmos. Sci.381827Google Scholar
  23. 23.
    Plumb, R. A. 1983J. Atmos. Sci.40262Google Scholar
  24. 24.
    Salby, M. L., Callaghan, P. F. 2000J. Atmos. Sci.581858Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • M. Yu. Kulikov
    • 1
  1. 1.Institute of Applied PhysicsNizhny NovgorodRussia

Personalised recommendations