Radiophysics and Quantum Electronics

, Volume 47, Issue 9, pp 646–661 | Cite as

Radar observations of artificial ionospheric turbulence during a magnetic storm

  • V. P. Uryadov
  • G. G. Vertogradov
  • V. G. Vertogradov
  • A. A. Ponyatov
  • V. L. Frolov


We present the results of radar observations of artificial ionospheric turbulence (AIT) created due to modification of the ionosphere by high-power radio emission from the “Sura” heating facility (Nizhny Novgorod region, Russia). Measurements were carried out in August 18–22, 2003 in the evening time (16:00–20:00 UT) with the use of over-the-horizon chirp HF radars on the Khabarovsk-Rostov-on-Don, Irkutsk-Rostov-on-Don, Inskip (England)-Rostov-on-Don paths, and also on the Moscow-Rostov-on-Don path for which reference signals of the standard-time RVM station were received. It is found that conditions for propagation of HF signals through the upper ionosphere at frequencies exceeding the maximum usable frequency for standard hop propagation through the F region were realized on the Irkutsk-“Sura” path in the presence of the powerful sporadic Es layer. The presence of such signals was revealed at the Rostov-on-Don station by receiving radio waves which escape from the altitudes of the ionospheric F region due to scattering by artificial small-scale magnetic-field-aligned irregularities. We studied the ionospheric effects of a magnetic storm occurring during the experiment by using the measurement data of the Doppler frequency shift of signals scattered by artificial ionospheric turbulence. It is shown that during a magnetic storm, the electric field and the drift velocity of irregularities at the altitudes of the F layer over the “Sura” facility reach values of ∼ 8.6 mV/m and 186 m/s, respectively, which are typical of the high-latitude ionosphere. We consider the relation between quasi-periodic oscillations of the Doppler frequency shift of the scattered signal and propagation of magnetohydrodynamic waves excited during the magnetospheric storm.


Magnetic Storm Radar Observation Doppler Frequency Shift Heating Facility Novgorod Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurevich, A. V., Tsedilina, E. E. 1985Long-Distance Propagation of HF Radio WavesSpringer-VerlagNew YorkGoogle Scholar
  2. 2.
    Kravtsov, Yu. A., Tinin, M. V., Cherkashin, Yu. N. 1979Geomagn. Aeron.19519Google Scholar
  3. 3.
    Getmantsev, G. G., Erukhimov, L. M., Mityakov, N. A., Polyakov, S. V., Uryadov, V. P., Frolov, V. L. 1976Radiophys. Quantum Electron.191327Google Scholar
  4. 4.
    Uryadov, V. P., Ryabova, N. V., Ivanov, V. A., Shumaev, V. V. 1995J. Atmos. Terr. Phys.571263Google Scholar
  5. 5.
    Frolov, V. L., Sergeev, E. N., Stubbe, P.,  et al. 2001Geophys. Res. Lett.283103Google Scholar
  6. 6.
    Blagoveshchenskaya, N. F., Kornienko, V. A., Brekke, A.,  et al. 1999Radio Sci.34715Google Scholar
  7. 7. Scholar
  8. 8. Scholar
  9. 9. Scholar
  10. 10.
    Afraimovich, É. L., Lesyuta, O. S., Ushakov, I. I. 2003Proc. 9th Int. Sci. Tech. Conf. “Radar, Navigation, and Communication,”31671[in Russian]Google Scholar
  11. 11.
    Zherebtsov, G. A., Zavorin, A. V., Medvedev, A. V.,  et al. 2002J. Commun. Technol. Electron.471222Google Scholar
  12. 12.
    Bryunelli, B. E., Namgaladze, A. A. 1988Physics of the IonosphereNaukaMoscow[in Russian]Google Scholar
  13. 13.
    Erukhimov, L. M., Metelev, S. A., Myasnikov, E. N., Mityakov, N. A., Frolov, V. L. 1987Radiophys. Quantum Electron.30156Google Scholar
  14. 14.
    Vertogradov, G. G., Myatezhnikov, Yu. P., Uryadov, V. P., Rozanov, S. V. 2004Radiophys. Quantum Electron.4714Google Scholar
  15. 15.
    Uryadov, V. P., Ponyatov, A. A. 2002Proc.8th Int. Sci. Tech. Conf.“Radar, Navigation, and Communication,”31582[in Russian]Google Scholar
  16. 16.
    Boguta, N. M., Noga, Yu. V., Uryadov, V. P. 1989Geomagn. Aéron.29678Google Scholar
  17. 17.
    Scali, J. L., Reinisch, B. W., Heinselman, C. J., Bullet, T. W. 1995Radio Sci.301481Google Scholar
  18. 18.
    Nishida, A. 1978Geomagnetic Diagnosis of the MagnetosphereSpringer-VerlagNew YorkGoogle Scholar
  19. 19. Scholar
  20. 20.
    Blagoveshchensky, D. V., Zherebtsov, G. A. 1987High-Latitude Geophysical Phenomena and a Forecast of High-Frequency Radio ChannelsNaukaMoscow[in Russian]Google Scholar
  21. 21.
    Basu, Su., Basu, Sa., Valladares, C. E.,  et al. 2001J. Geophys. Res.10630389Google Scholar
  22. 22.
    Nasyrov, A. M. 1991Scattering of Radio Waves by Anisotropic Ionospheric IrregularitiesKazan’ Univ. PressKazan’[in Russian]Google Scholar
  23. 23.
    Guglielmi, A. V., Troitskaya, V. E. 1973Geomagnetic Pulsations and Diagnostics of the MagnetosphereNaukaMoscow[in Russian]Google Scholar
  24. 24.
    Sinitsin, V. G., Kelley, M. C., Yampolski, Yu. M.,  et al. 1999J. Atmos. Sol.-Terr. Phys.610903Google Scholar
  25. 25.
    Blagoveshchenskaya, N. F., Troshichev, O. A. 1996J. Atmos. Terr. Phys.58397Google Scholar
  26. 26.
    Saito, T. 1969Space Sci. Rev.10319Google Scholar
  27. 27.
    Frank-Kamenetskii, D. A. 1964Lectures in Plasma PhysicsAtomizdatMoscow[in Russian]Google Scholar
  28. 28.
    Fatkullin, M. N., Zelenova, T. I., Kozlov, V. K.,  et al. 1981Empirical Models of the Mid-Latitude IonosphereNaukaMoscow[in Russian]Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • V. P. Uryadov
    • 1
  • G. G. Vertogradov
    • 2
  • V. G. Vertogradov
    • 2
  • A. A. Ponyatov
    • 1
  • V. L. Frolov
    • 1
  1. 1.Radiophysical Research InstituteNizhny Novgorod
  2. 2.State University of Rost-on-DonRost-on-DonRussia

Personalised recommendations